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Abstract. Clustering is an essential data mining task with various types of
applications. Traditional clustering algorithms are based on a vector space
model representation. A relational database system often contains multi-
relational information spread across multiple relations (tables). In order to
cluster such data, one would require to restrict the analysis to a single
representation, or to construct a feature space comprising all possible
representations from the data stored in multiple tables. In this paper, we present
a data summarization approach, borrowed from the Information Retrieval
theory, to clustering in multi-relational environment. We find that the data
summarization technique can be used here to capture the typical high volume of
multiple instances and numerous forms of patterns. Our experiments
demonstrate a technique to cluster data in a multi-relational environment and
show the evaluation results on the mutagenesis dataset. In addition, the effect of
varying the number of features considered in clustering on the classification
performance is also evaluated.

Keywords: Relational Data Mining, Distance-based, Clustering, Multiple
Instance, Relational Database.

1. Introduction

Clustering is a process of grouping data that shares similar characteristics into groups.
Despite the increase in volume of datasets stored in relational databases, only few
studies handle clustering across multiple relations [16, 17]. In a dataset stored in a
relational database with one-to-many associations between records, each table record
(or object) can form numerous patterns of association with records from other tables.
For example, Fig. 1 illustrates the scenario in which a single object has multiple
instances. In this scenario, relation T1 has a one-to-many relationship with relation
T2, through the association of fields Id1 and Id2. Similarly, relation T2 has a one-to-
many relationship with relation T3, through the association of fields Name2 and Id3.
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For instance, object Id1=1 with class label A, will have a set of instances,
instance(id1 = 1) = {(X,111), (X,112), (X,113), (Z,117)}.

Fig. 1 A dataset stored in a relational database with two levels of one-to-many
relationship.

Clustering in a multi-relational environment has been studied in Relational
Distance-Based Clustering (RDBC) [16,17]. Clustering [12,13] is an unsupervised
learning technique, that is, it can operate on unannotated data. However, it can be
used as the first step of a supervised learning tool. For instance, a dataset split into
classes can be clustered (without making use of the class labels) and then associations
between clusters and classes learned using one of many supervised learning tools.
This is the case in RDBC, where the role of this tool is performed by a decision tree
learner. The approach proposed in this paper, follows the same strategy, combining a
novel clustering technique (described in Section 3) with C4.5.

In RDBC, the similarity between two objects is defined on the basis of the tuples
that can be joined to each of them. In this way, each of the two objects is expanded
into a set of records, and the two sets are compared as follows: for each record in one
set, the closest match in the other set is found, and their distance added. The distance
between two such records is measured in the usual ways, comparing each pair of
attributes in turn, depending on the types of attributes involved, e.g., as differences of
numerical values, or a Hamming distance in the case of categorical values. However,
the RDBC process of computing the distance between two objects is very expensive,
since the process compares repeatedly components of first-order instances where each
comparison is eventually reduced to a propositional comparison of elementary
features. In addition to that, the RDBC approach only considers the minimum
distance measured between instances to differentiate two objects and may not
generate good clustering results, which leads to less meaningful clustering results.
RDBC approach is also not able to generate interpretable rules. In our approach to
clustering in a multi-relational environment, we consider all instances of an object
when the distance between two objects is computed. By clustering objects with
multiple instances, objects with the same characteristics are grouped together and
objects with different characteristics are separated into different groups. Traditional
clustering algorithms are based on one representation space, usually a vector space.
However, in a relational database system, multiple instances in a non-target table exist
for each object in the target table, due to the one-to-many association between
multiple instances and the object. To cluster multiple-instance data using the
established methods would require to restrict the analysis to a single representation or
to construct a feature space comprising all representations.
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In this paper, we present a data summarization approach, borrowed from the
information retrieval theory, to cluster such multi-instance data. We propose a
technique that considers all available instances of an object for clustering and we
show the evaluation results on the mutagenesis dataset. In addition, the effect of the
number of relevant features on the classification performance is also evaluated. The
rest of the paper is organized as follows. In Section 2, we present related work on data
mining in a multi-relational environment. Section 3 formalizes the problem and
introduces our new pre-processing method for the purposes of clustering, called
Dynamic Aggregation of Relational Attributes (DARA) [18, 19]. Section 4 provides
the experimental evaluation and the last section summarizes the paper and presents
some ideas for future research.

2. Learning in a Multi-Relational Environment

The most popular approach to supervised learning in a multi-relational environment is
relational learning. Relational learning is not a new research area, and has a long
history. Muggleton et al. [1] introduce the concept of Inductive Logic Programming
(ILP) and its theory, methods and implementations in learning multi-relational
domains. ILP methods learn a set of existentially quantified first-order Horn clauses
that can be applied as a classifier [9, 11]. In a relational learner based on logic-based
propositionalization [2], instead of searching the first-order hypothesis space directly,
one uses a transformation module to compute a large number of propositional features
and then uses a propositional learner.

Variants of relational learning include distance-based methods [6, 7]. The central
idea of distance-based methods is that it is possible to compute the mutual distance
[7] for each pair of objects. Relational Instance-Based Learning (RIBL) algorithms
extend the idea of instance based learning to relational learning [7]. Instance-based
learning (IBL) algorithms [5] are very popular and a well studied choice [3] for
propositional learning problems. Probabilistic Relational Models (PRMs) [14]
provide another approach to relational data mining that is grounded in a sound
statistical framework. In PRMs, a model is introduced that specifies, for each
attributes of an object, its (probabilistic) dependence on other attributes of that object
and on attributes of related objects. Propescul et al. [15] proposed a combined
approach called Structural Logistic Regression (SLR) that combines relational and
statistical learning.

Data stored in a multi-relational environment can be considered as multiple
instances of an object stored in the target table. As a result, learning multiple
instances can be applied in learning data in a multi-relational environment. In multi-
instance (MI) learning, instances are organized into bags that are labeled for training,
instead of individual instances. Multiple instance learners assume that all instances, in
a bag labeled negative, are negative and at least one instance in a bag labeled positive
is positive. Several approaches have been designed to solve the multiple instance
learning. Dietterich et al. [4] described an algorithm to learn axis-parallel rectangles
(APRs) from MI data. Maron et al. introduced a framework called Diverse Density to
learn Gaussian concepts [25]. Another approach using lazy learning has been
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investigated in this context as well [23]. Unlike the former approaches, a framework
for learning rules from multiple data was introduced by Chevaleyre et al. [24]. Most
of the approaches [23, 4, 25] are not able to generate interpretable rule sets or decision
trees.

In Relational Distance-Based Clustering (RDBC) [16,17], the similarity between
two objects are defined based on tuples joinable with them. The distance measure
uses the idea of computing distances by recursively comparing the components of
first-orders instances, in which it is highly expensive if we have many tables. In
addition to that, RDBC approach only considers the minimum distance measured
between instances to differentiate two objects and may not generate good clustering
results, which leads to less meaningful clustering results. RDBC approach is also not
able to generate interpretable rules. In our approach, we transform the data
representation in a multi-relational environment into a vector space model (explained
in Section 3) suitable or applicable to clustering operation. By clustering them, we
could group bags with multiple instances that have similar characteristics that can be
extracted, as an interpretable rule to describe the cluster’s behaviors.

3. Multi-Relational Setting and DARA

3.1. The Multi-Relational Setting

Let DB be a database consisting of n objects. Let R := {R1,…,Rm} be the set of
different representations existing for objects in DB and each object may have zero or
more than one representation of each Ri, such that |Ri| ≥0, where i = 1,…,m. Each
object Oi DB, where i = 1,…,n can be described by maximally m different
representations with each representation has its frequency,

Oi := {R1(Oi):|R1(Oi)|:|Ob(R1)|,…,Rm(|Oi):|Rm(O i)|:|Ob(Rm)| },

with Rj(Oi) represents the j-th representation in the i-th object and |R j(Oi)| represents
the frequency of the j-th representation in the i-th object, and finally |Ob(Rj)|
represents the frequency of object with j-th representation. If all different
representations exist for O i, then the total different representations for O i is |Oi| = m
else |Oi| < m.

In relational instance-based learning, the distance measures are defined based on
the attribute’s type [6] and the distance between two objects is based on the minimum
distance between pair of instances from the two objects. In our approach, we apply
the vector-space model [8] to represent each object. In this model, each object Oi is
considered as a vector in the representation-space. In particular, we employed the rf-
iof term weighting model borrowed from [8], where in which each object O i, i =
1,…,n can be represented as

(rf1 ·log(n/of1), rf2 ·log(n/of2), . . . , rfm·log(n/ofm)),
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where rfj is the frequency of the j-th representation in the object, ofj is the number of
objects that contain the j-th representation and n is the number of objects. To account
for objects of different lengths, the length of each object vector is normalized so that
it is of unit length (||orfiof||= 1), that is each object is a vector on the unit hypersphere.
In this experiment, we will assume that the vector representation for each object has
been weighted using rf-iof and it has been normalized so that it is of unit length. In the
vector-space model, the cosine similarity is the most commonly used method to
compute the similarity between two objects Oi and Oj, sim(Oi,Oj), which is defined as
cos(Oi,Oj) = O i·Oj/(||Oi||·|||O j||). The cosine formula can be simplified to cos(Oi,Oj) =
O i·Oj, when the record vectors are of unit length. This measure becomes one if the
records are identical, and zero if there is nothing in common between them. The idea
of our approach is to transform the data representation for all objects in a multi-
relational environment into a vector space model and find the similarity distance
measures for all objects to cluster them. These objects then are grouped based on the
similarity of their characteristics, taking into account all possible representations and
the frequency of each representation for all objects. For instance, from Fig. 1 we have
O1 = {(X,111):2:2, (X,112):2:2, (X,113):2:2, (Z,117):1:2}, O2 = {(X,111):1:2,
(X,112):1:2, (X,113):1:2, (Y,116):1:2} and O3 = {(Y,116):1:2, (Z,117):1:2}, and the
feature vectors for O1, O2 and O3 based on these instances, {(X,111), (X,112),
(X,113), (Z,117), (Y,116)}, are shown below,

Then, the similarity measure of two objects can be computed by using the cosine
distance, where the values for cos(O1,O2), cos(O1 ,O3) and cos(O2,O3) are as follows;

cos(O1,O2) =
)0.1820.1820.1820.182(*)0.1820.3520.3520.352(

0.18)*(0.00)00.0*18.0(0.18)*(0.350.18)*(0.350.18)*(0.35




= 0.83

cos(O1,O3) =
)0.182(*)0.1820.3520.3520.352(

0.18)*(0.00)18.0*18.0(0.00)*(0.350.00)*(0.350.00)*(0.35




= 0.28

cos(O2,O3) =
)0.1820.182(*)0.1820.1820.1820.182(

0.18)*(0.18)18.0*00.0(0.00)*(0.180.00)*(0.180.00)*(0.18




= 0.50

For cosine distance, the bigger the value is the smaller the distance. So we can
conclude that object O1 is more similar to object O2 than to object O3.

3.2. Dynamic Aggregation of Relational Attributes (DARA)

In relational database, records are stored separately in different tables and they are
associated through the matching of primary and foreign keys. With a high degree of

O1 = (2·log(3/2), 2·log(3/2), 2·log(3/2), 1·log(3/2), 0·log(3/2))
= (0.35, 0.35, 0.35, 0.18, 0.00)

O2 = (1·log(3/2), 1·log(3/2), 1·log(3/2), 0·log(3/2), 1·log(3/2))
= (0.18, 0.18, 0.18, 0.00, 0.18)

O3 = (0·log(3/2), 0·log(3/2), 0·log(3/2), 1·log(3/2), 1·log(3/2))
= (0.00, 0.00, 0.00, 0.18, 0.18)
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one-to-many association, a single record, O, stored in a main table is associated with a
large volume of records stored in another table. In our algorithm called the Dynamic
Aggregation of Relational Attributes (DARA), we convert the data representation
from a relational model into a vector space model.

Let O denotes a set of m records stored in the target table and let R denotes a set of
n records (T1, T2, T3, … , Tn) stored in the non-target table. Let Ri is in the subset of R ,
RiR, and is associated with a single record Oa stored in the target table, OaO .
Thus, the association of these records can be described as Oa → Ri. Since a record can
be characterized based on the bag of term/records that are associated with it, we use
the vector space model to cluster these records, as described in the work of Salton et
al. [8]. In vector space model, a record is represented as a vector or ‘bag of terms’,
i.e., by the terms it contains and their frequency, regardless of their order. These terms
are encoded and represent instances stored in the non-target table referred by a record
stored in the target table. The non-target table may have a single attribute or multiple
attributes and the process of encoding the terms is as follows;

Case I: Non-target table with a single attribute
 Step 1) Compute the cardinality of the attribute’s domain in the non-target table.

For continuous values, discretizes them and take the number of bins as the
cardinality of the attribute’s domain

 Step 2) To encode values, find the appropriate number of bits, n, that can represent
different values for the attribute’s domain, where 2n- 1 < |Attribute’s Domain| ≤2n .
For example, if a city’s attribute has 5 different values (London, New York,
Chicago, Paris, Kuala Lumpur), then we just need 3 (5 < 23) bits to represent each
of those value (001, 010, 011, 100, 101).

 Step 3) Each encoded term will be added to the bag of terms that describes the
characteristics of the record associated with them.

Case II: Non-target table with multiple attributes
 Step 1) Repeat step 1) and step 2) in Case I, for all attributes
 Step 2) For each instance of a record stored in the non-target table, concatenate p-

number of columns’ values, where p is less than or equal to the total number of
attributes. For example, let F = (F1, F2, F3,…, Fk) denotes k attributes in the non-
target table. Let dom(Fi) denotes the domain of the i-th attribute. So, we can have
instances of record in the non-target table with these values (F1,a, F2,b , F3,c, F4,d,… ,
F k- 1,b, Fk,n), where a dom(F1), b dom(F2), c dom(F3), d dom(F4),…, b
dom(Fk-1), n dom(Fk). If p = 1, we have 1:F1a, 2:F2,b, 3:F3,c, 4:F4,d,…, k-1:Fk-

1,b , k:Fk,n as the produced terms. If p = 2, then we have 1:F1,aF2,b, 2:F3,cF4,d,…,
(k/2):Fk-1,bFk,n (provided we have even number of fields). Finally, if we have p = k,
then we have 1:F1,aF2,bF3,cF4,d…Fk-1,bFk,n as a single term produced. We
concatenate a number in front of the binary number to indicate the memberships
of values to their attributes. For instance, if we have p = 1, we have 1:F1a, 2:F2,b ,
3:F3,c, 4:F4,d,…, k-1:Fk- 1,b, k:Fk,n, where i:F j,k, refers to the i-th instance of j-th
attribute and a dom(Fj).

 Step 3) For each encoded term, add this term to the bag of terms that describes the
characteristics of a record associated with it.
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For example, from our previous example, we have the cardinality of Name2 in T2
as 3, the cardinality of Name3 in T3 as 5. Thus we require 2 digits of binary number
to represent the domain of Name2 in T2 (01 for X, 10 for Z and 11 for Y), and 3 digits
of binary number to represent the domain of for Name3 in T3 (001 for 111, 010 for
112, 011 for 113, 100 for 116 and 101 for 117). As a result, when we have p = 1, then
we have

O1 = {1:01, 2:001, 1:01, 2:010, 1:01, 2:011, 1:10, 2:101},
O2 = {1:01, 2:001, 1:01, 2:010, 1:01, 2:011, 1:11, 2:100} and
O3 = {1:11, 2:101, 1:10, 2:101}.

And if we have p = 2, then we have

O1 = {1:01001, 1:01010, 1:01011, 1:10101},
O2 = {1:01001, 1:01010, 1:01011, 1:11100} and
O3 = {1:11101, 1:10101}.

The encoding process to transform relational datasets into data represented in a
vector-space model has been implemented in DARA [18,19]. Given this data
representation, we can use clustering techniques [12,13] to cluster them, as a means of
aggregating them. DARA algorithm simply assigns each record in the target table
with the cluster number. Each cluster then can generate more information by looking
at the most frequent patterns that describe each cluster.

4. Experimental Evaluations

In this experiment, we employ an algorithm, called DARA that converts the dataset
representation in relational model into a space vector model and use a distanced-based
method to group objects with multiple representations occurrence. With DARA
algorithm, all representations of two objects are taken into consideration in measuring
the similarity measure between these two objects. The DARA algorithm can also be
seen as an aggregation function for multiple instances of an object, and is coupled
with the C4.5 classifier (J48 in WEKA) [20], as an induction algorithm that is run on
the DARA’s transformed data representation. We then evaluate the effectiveness of
each data transformation with respect to C4.5. The C4.5 learning algorithm [21] is a
state-of-the-art top-down method for inducing decision trees. All experiments with
DARA and C4.5 were performed using a leave-one-out cross validation estimation
with different values of p, where p denotes the number of attributes being
concatenated. We chose well-known dataset, Mutagenesis [22].

The mutagenesis data [22] describes 188 molecules falling in two classes,
mutagenic (active) and non-mutagenic (inactive); 125 of these molecules are
mutagenic. The description consists of the atoms and bonds that make up the
compound. Thus, a molecule is described by listing its atoms atom(AtomID, Element,
Type, Charge), and the bonds bond(Atom1, Atom2, BondType) between atoms. In this
experiment, we use three different sets of background knowledge: B1, B2 and B3.

 B1: The atoms in the molecule are given, as well as the bonds between them; the
type of each bond is given as well as the element and type of each atom. The table
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for B1 has the schema Molecule(ID, ATOM1, ATOM2, TYPE_ATOM1,
TYPE_ATOM2, BOND_TYPE), where each molecule is described over several
rows, listing all pairs of atoms with a bond, and the type of each atom, and the type
of bond between them.

 B2: Continuous values about the charge of atoms are added to all data in B1.

 B3: Two continuous values describing each molecule are added to all data in B2.
These values are the log of compound’s octanol/water partition coefficient (logP)
and energy of the compound’s lowest unoccupied molecular orbital (ЄLUMO).

In B1, there are five attributes that describe an individual molecule, namely first
atom, second atom, first element’s type, second element’s type and bondtype. There
are typically several records for each molecule. We performed a leave-one-out cross
validation estimation using the C4.5 classifier for p = 1, 2, 3, 4, 5 as we have a total of
five attributes for dataset B1. Table 1 shows that the predictive accuracy of the
decision tree learned is the highest when p is 2 or 5. When we have p = 2, the
attributes used for clustering are the following 3 compounds: [first atom, second
atom], [first element’s type, second element’s type], and [bondtype]. When p = 5, the
only attribute used is: [first atom, second atom, first element’s type, second element’s
type, bondtype].

Table 1. Performance of C4.5 on Mutagenesis datasets B1, B2 and B3
Datasets\p 1 2 3 4 5 6 7 8 9

B1 80.9 81.4 77.7 78.8 81.2 - - - -
B2 79.5 80.0 81.2 80.3 82.8 81.8 79.5 - -
B3 79.5 81.6 79.1 82.7 80.2 79.1 79.0 82.7 78.6

A test using the correlation-based feature selection (CFS in WEKA) function [20]
provides a possible explanation of these results. We find that the two attributes, first
element’s type and second element’s type, are highly correlated with the class
membership, yet uncorrelated with each other. This means that an attribute combining
these two would be relevant to the learning task and split the instance space in a
suitable manner. The data contains this composite attribute when p = 2, 4 and 5, but
not for the cases of p = 1 and 3.

In B2, two attributes are added into B1, which are the charges of both atoms. We
performed a leave-one-out cross validation estimation using the C4.5 classifier for
p{1, ... ,7}, as we now have a total of seven attributes for dataset B2. With
additional two more attributes, we have a higher prediction accuracy of the decision
tree when p = 5, compared to learning from B1 when p = 5, as shown in Table 1 and
Fig. 2. When p = 5, we have two compound attributes, [first atom, second atom, first
element’s type, second element’s type, bondtype], and [first element’s charge, second
element’s charge]. Fig. 2 shows that the a drop in performance when p = 1, 2 and 7.
In contrast, we have higher prediction accuracy when p = 5. We have shown above
that in the case of B1, the attributes first element’s type and second element’s type are
highly correlated with the class membership. For B2, we have used the same
technique to find that the first element’s charge and the second element’s charge are
also highly correlated with the class membership, yet uncorrelated with each other.
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This explains the higher prediction accuracy for B2 and p = 5, as in this case 2 useful
compound attributes are formed: [first element’s type, second element’s type] and
[first element’s charge, second element’s charge].

In B3, two more attributes are added to the existing dataset B2, and we now have
the following row of attributes: [first atom, second atom, first element’s type, second
element’s type, bondtype, first element’s charge, second element’s charge, logP,
ЄLUMO]. Fig.2. indicates that the prediction accuracy of a leave-one-out cross
validation of C4.5 is the highest when p = 4 and 8. When p = 4, we have the following
compound attributes [first atom, second atom, first element’s type, second element’s
type], [bondtype, first element’s charge, second element’s charge, logP] and, finally
[ЄLUMO]. Each of the first two subsets of attributes contains a pair of attributes that
are highly correlated with the class membership. Again, this can be used to explain
the high prediction accuracy for a leave-one-out cross validation of C4.5 when p = 4
with dataset B3.

Table 2 shows the DARA+C4.5 performance in the case of the mutagenesis
dataset, using leave-one-out cross-validation and the J48 implementation of C4.5 [20].
The results show that (1) there is no other algorithm that outperformed ours on all
datasets, and (2) for each of the other algorithms listed in the table, there is a dataset
on which our algorithm performed better. For instance, our approach outperforms
RDBC when all available tables are used. Unlike RDBC, our approach computes the
distance between two different objects based on the representation of its instances
(concatenated attributes). As a result, for each cluster, we can find the representations
(by taking the representation with highest weight) that best describe the clusters and
these representations can be used as an interpretable rules for clustering or classifying
unseen objects with multiple instances.

Leave-One-Out Cross Validation Performance on Mutagenesis
Datasets (B1, B2, B3)
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Table 2. Comparison of performance accuracy on Mutagenesis Dataset

MutagenesisAlgorithms B1 B2 B3
PROGOL [22] 76% 81% 83%
FOIL [10] 83% 75% 83%
TILDE 75% 75% 85%
RDBC [16,17] 83% 84% 82%
DARA [18,19] 81% 83% 83%

Fig. 3. A target table is associated with multi-level of one-to-many relationship of
non-target tables (NT: Non target table, T: Target table).

Fig. 4. A target table is associated with a multiple number of one-to-many
relationships of non-target tables (NT: Non target table, T: Target table).

5. Conclusion

This paper presents an algorithm transforming datasets in a multi-relational setting
into a vector space model that is suitable to clustering operations, as a means of
aggregating or summarizing multiple instances. We carried out an experiment that
clusters the objects in a multi-relational setting based on the patterns formed. The
results show that varying the number of concatenated attributes p before clustering
has an influence on the predictive accuracy of the decision tree learned by the C4.5
classifier. We have found that an increase in accuracy coincides with the cases of
grouping together attributes that are highly correlated with the class membership.
However, the prediction accuracy is degraded when the number of attributes
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NT NT
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concatenated is increased further. The results indicate that limiting the number of
attributes may be desirable. At the same time, it is beneficial to combine attributes
that are highly correlated with the class membership together. In this study, keeping
the number of concatenated attributes n relatively small (e.g. n≤5), results in the best
performance in terms of prediction accuracy as measured by leave-one-out cross-
validation of the C4.5 decision tree.

Finally, the results show that data summarization performed by DARA, can be
beneficial in summarizing datasets in a complex multi-relational environment, in
which datasets are stored in a multi-level of one-to-many relationships (i.e., tables, see
Fig. 3), and also in the case of datasets stored in more than one one-to-many
relationships with non-target tables (see Fig. 4). These are some of the areas that need
further investigation. Since data summarization can be applied at a different level,
this approach is scalable. For instance, in Fig. 3, one may perform the data
summarization in B first, so that table A and B can be joined easily, before table B
can be summarized in order to learn data stored in table C. Another area that needs
further investigation is whether data summarization can be improved by applying a
feature selection algorithm (CFS) based on a genetic algorithm to search for good
subsets of attributes from multiple tables and create instances from these subsets of
attributes in order to improve the prediction accuracy.
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