
Approximate Functional Dependencies for XML
Data

Fabio Fassetti and Bettina Fazzinga

DEIS - Università della Calabria
Via P. Bucci, 41C

87036 Rende (CS), Italy
{ffassetti,bfazzinga}@deis.unical.it

Abstract. Functional dependencies (FDs) are an integral part of database
theory since they are used in integrity enforcement and in database de-
sign. Recently, functional dependencies satisfied by XML data (XFDs)
have been introduced. In this work approximate functional dependen-
cies that are XFDs approximately satisfied by a considerable part of the
XML database are defined and the problem of inferring such XFDs is
addressed.

1 Introduction

Traditionally, in order to guarantee data consistency, integrity constraints are es-
sential [1, 14]. Among them, it is widely recognized that functional dependencies
(FDs) are the most important and common semantic constraints encountered in
databases.

In classical approach FDs are considered to be provided from database de-
signers, but in several areas as data cleaning, data integration and data analysis,
they may also be retrieved from the extensional data. The problem of extracting
functional dependencies has been deeply addressed for relational databases [4,
11, 13] and recently investigated also with a data mining point of view [12]. An-
other important goal in the context of using FDs as knowledge to mine from data
is to extract FDs that are not satisfied by all the database entries but from the
majority of them [9, 10]. This allows the discovery of erroneous or exceptional
elements in the data, that is very useful for data cleaning and data integration.
Furthermore, this kind of FDs let us to identify constraints very frequent in the
database that are meaningful for data analysis, even if they are not valid in the
whole database.

Recently integrity constraints have been introduced also for XML data [2, 5–
8, 15, 16]. In particular, in [2, 15] two definitions of XML functional dependencies
(XFDs) are given. Both these definitions treat the equality between two XML
elements as equality between their identifiers and they do not use the subtrees
equivalence. Even if this approach can be useful for a database designer and for
normalizing an XML database, it does not fit well when the FDs are unknown,
and the goal is to extract them from the database. To this aim, in [16] a novel

Y. Ioannidis, B. Novikov and B. Rachev (Eds.): Local Proceedings of ADBIS 2007, pp. 86-95
© Technical University of Varna, 2007

57

"Abiteboul"

title

book

"Foundations

26

27

authors

author

30

29

28

of DatabasesIEd."

25
name

"Database
Systems"

name"4" "2007"

professorcredits year semester

"Fall"

course

faculty
ROOT1

name year professor

name"Programming"

credits

"5" "2007"

course

semester

"Spring""Database

name

Systems"

4

3

"Robinson"
19

17

title

book

"Foundations author

"Abiteboul""Hull"

authors

of Databases"
author

"3"

credits year

"2005"
16

professor

name
18

semester

"Spring"

course2

15
5

6

7

8

9

10

11

12

13

14

20

21

name

"Database
Systems"

"4"

credits year

"2006"

professor

name

"P.Robinson"

semester

"Fall"

course
22

23

24

31

32

33

34

35

36

37

38

39 title

book

author

"Hull"

author

authors

of Databases"
"Foundations

"Abiteboul"

40

41

42

43

44

45

46

47

48

book

authors

author

"Lippman"

"C++ Primer"

title

49

50

51

52 54

53 55

56 59

58

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

"Brown"
75

"J.Brown"

Fig. 1: UnivInfo XML Tree

definition for XML functional dependency, using subtree equivalence as element
equivalence, is proposed and the problem of inferring XFDs from XML data
is addressed. Nevertheless, authors do not deal with the problem to discover
approximate XFDs.

The complex structure of XML data adds an interesting facet about the
satisfaction of XFDs. In fact, whereas the satisfaction of an FD in a relational
database is checked comparing values contained in the tuple of the database,
the satisfaction of an XFD implies the tree comparison since each “tuple” of
an XML database is composed by trees. Since tree structure is complicated and
it can contain several subtrees, it can happen that two trees describe the same
object, but their shape and content are slightly different. In these cases, these
trees invalidate the satisfaction of an XFD because their are not perfectly equal.
Instead, it is very interesting and useful to evaluate how much trees are similar
by means of a proper measure and then, if they are judged “enough” similar,
the XFD is to be considered approximately satisfied. For example, consider the
XML tree shown in Figure 1. Obviously, trees rooted at “book” elements 5 and
25 identify the same book, but they are not perfectly the same. In this case,
checking the satisfaction of the XFD claiming that the name of a course implies
the text book yields a negative answer using the approach proposed in [16], but
in fact the XFD is satisfied.

Furthermore, in many cases, extracting functional dependencies that do not
hold in the whole database, but in the majority of it, is very useful, as stated pre-
viously. For example, consider the XML tree in Figure 1 and the XFD claiming
that the course name implies the number of credits. Such an XFD does not hold
in the whole database, since for the course “Database Systems”, the number of
credits is “3” in “2005” and “4” in “2006”. Therefore, using approach proposed
in [16], such an XFD is not inferred, but, since the XFD almost always holds in
the database, it is interesting and then should be extracted.

Finally, if no approximation is employed in checking XFD satisfaction, it
could happen that some XFDs that in fact do not hold are extracted. For ex-
ample, consider the XML tree shown in Figure 1 and the XFD claiming that

87 Fabio Fassetti and Bettina Fazzinga

professor implies the semester. Since all the professors are slightly different from
one another, this XFD holds if approach proposed in [16] is considered. Nev-
ertheless, professor rooted at 17 is much similar to professor rooted at 35, and
professor rooted at 55 is similar to professor rooted at 73, but since semesters
are different the XFD does not hold and it should not be extracted.

The aim of this work is the discovery of approximate functional dependencies
on XML documents, namely the set of XFDs that are approximately satisfied by
a given collection of XML data. We introduce a notion of approximate satisfac-
tion of an XFD (σ-approximation) based on the dissimilarity measure between
trees and we use this new concept for discovering XFDs σ-approximately satis-
fied by a percentage of “tuples” of the XML database specified in advance. To
the best of our knowledge this is the first work dealing with the discovery of
approximate XFDs.

The rest of the paper is planned as follows. Section 2 provides some pre-
liminary definitions and the notation used in the paper. Section 3 presents the
definition of approximate XFDs. Section 4 addresses the inference problem. Fi-
nally, Section 5 draws the conclusions.

2 Preliminaries

Let L be a countably infinite set of labels, S be a countably infinite set of strings
and let ε /∈ S denote the empty string.

Definition 1 (XML Tree). An XML tree is a quadruple T = 〈r,N ,V, λ〉,
where N denotes the set of nodes, r ∈ N denotes the root of T , V ⊆ N × N
denotes the set of edges and λ : N → L ∪ S is a function s.t. ∀ ni ∈ N ,

– λ(ni) ∈ L, if ∃ (ni, n) ∈ V; (ni is called element node)
– λ(ni) ∈ S, otherwise (ni is called text node)

In the rest of the paper, we assume that the XML tree is not recursive, that
is there are no two nodes having the same label s.t. one of them is descendant
of the other one.

Definition 2 (Path). A path is an expression of the form /l1/ . . . /lk, where
k ≥ 1 and

– li ∈ L, i ∈ [1..k − 1];
– lk ∈ L ∪ {#text}

Definition 3 (Path Prefix). Given two paths p = /l1/ . . . /lk and p′ = /l′1/ . . . /l′h,
p is a prefix of p′ iff k ≤ h ∧ li = l′i ∀i ∈ [1, . . . , k].

Definition 4 (Path Instance). Given a path p = /l1/ . . . /lk and an XML
tree T = {r,N ,V, λ}, p matches on T iff there exists {n1, . . . , nk} ⊆ N s.t. the
following conditions hold:

– λ(ni) = li,∀i ∈ [1..k − 1]

88Approximate functional dependencies for XML data

–

{
λ(nk) = lk if lk ∈ L
λ(nk) ∈ S if lk = #text

– (ni, ni+1) ∈ V, ∀i ∈ [1..k − 1]

In such a case, we say that π = /n1/ . . . /nk is a path instance of p in T , and
nk is the ending node of π in T .

For instance, considering Figure 1, /faculty/course, /professor/name are
paths, /faculty/course/professor is a prefix of /faculty/course/professor/name,
and {/1/2/15} is a path instance of /faculty/course/year, whereas {/1/2/15/16}
is a path instance of /faculty/course/year/#text.

Definition 5 (Ending Nodes Set). Let T be an XML tree, p = /l1/ . . . /lk be
a path, and Π = {π1, . . . , πh} be the set of all the path instances of p in T . The
ending nodes set EN (p) = {m1, . . . , mh} is the set of nodes of T s.t. each mi is
the ending node of πi in T .

For example, consider the path p = /faculty/course/name the ending nodes
set of p is EN (p) = {3, 23, 41, 61}.
Definition 6 (Repeated Path). Let p and p′ be two paths. p′ is said to be
a repeated path for p if p is a prefix of p′ and there exists at least one node
n ∈ EN (p) that is ancestor of at least two ending nodes of p′.

For example, /faculty/course/book/authors/author is a repeated path for
/faculty/course/book/authors since there exists node 8 ∈ EN (/faculty/course
/book/authors) and there exist node 9 and 11, belonging to EN (/faculty/course
/book/authors/author), both descendants of 8.

Definition 7 (Root Path). Given an XML tree T = 〈r,N ,V, λ〉 and a path
p = /l1/ . . . /lh, p is a root path w.r.t. T , iff l1 = λ(r).

In the sequel of the paper, whenever we refer to paths we mean root paths.
In order to handle missing elements (nulls), the completion of XML trees is

needed. Intuitively, given an XML tree T and a set of paths, an XML extended
tree of T w.r.t. the set of paths is an XML tree completed with nulls so that
each path of the set is matched.

Before defining the extended tree, we give our notion of XML tree contain-
ment.

Definition 8 (Tree containment). Given an XML tree T = 〈r,N ,V, λ〉, an
XML tree T ′ = 〈r,N ∪Υ,V ′, λ′〉 contains T (T v T ′), if the following conditions
hold:

– Υ = {⊥1, . . . ,⊥k} is a set of marked nulls.
– V ′ ⊇ V
– λ′(n) = λ(n), ∀n ∈ N
– λ′(m) ∈ L ∪ {ε},∀m ∈ Υ

89 Fabio Fassetti and Bettina Fazzinga

Last condition indicates that if a marked null represents an element then its
label must belong to L, otherwise its label must be empty.

Definition 9 (Extended Tree). Let T be an XML tree and P the set of all
paths of T . An XML tree T ′ = ξ(T) is an extended tree of T if the following
conditions hold:

– T v T ′
– for each path p ∈ P if there exists a path instance π = /n1/ . . . /nm of q

in T ′, where q is a prefix of p and q 6= p, then there exists a path instance
π′ = /n′1/ . . . /n′n of p in T ′ s.t. ni = n′i, i ∈ [1..m].

T ′ = 〈r,N ∪ Υ ′,V ′, λ′〉 is said to be minimal if there not exist an extended tree
T ′′ = 〈r,N ∪ Υ ′′,V ′′, λ′′〉 of T such that |Υ ′′| < |Υ ′|.

3 Approximate XML Functional Dependencies

In order to define approximate XFDs, two kinds of approximations are taken
in account. The first one (σ-approximation) concerns the structural and con-
tent similarity between “tuples” (trees) involved in the satisfaction of XFDs,
whereas the second one concerns the percentage of the whole database that
σ-approximately satisfies the functional dependencies. Therefore, approximate
XFDs are XFDs σ-approximately satisfied by a large part of a given XML doc-
ument. Intuitively, if two different instances of the left part of an XFD are quite
similar, then they can be considered as describing the same real-world entity.
Thus, the correspondent instances of the right part have to represent the same
entity, and then they must be similar, too.

The approach followed in this work needs neither a DTD nor an XML schema
defined on the document. Then, in order to single out “tuples” on which FDs
have to be verified, an approach similar to that proposed in [15] is exploited.

3.1 XFD Definitions

Firstly, the formal definition of XFD is given.

Definition 10 (XML Functional Dependency). Given an XML tree T , and
two sets of paths {p1, . . . , pm} and {q1, . . . , qn} of T , an XML functional de-
pendency (XFD) is an expression of the form p1, . . . , pm → q1, . . . , qn. The set
{p1, . . . , pm} (resp. {q1, . . . , qn}) is called left part (resp. right part) of the XFD.

Since p1, . . . , pm → q1, . . . , qn is equivalent to the set of XFDs

{p1, . . . , pm → q1; . . . ; p1, . . . , pm → qn}
w.l.o.g., in the following, we deal with XFDs whose right part contains only one
path.

In order to establish which nodes have to be considered belonging to the
same “instance” of an XFD, we recall the definition of closest node as proposed
in [15]. Note that the definition is in a little different form to match the setting
of this work.

90Approximate functional dependencies for XML data

Definition 11 (Closest Node). Given two paths p′ and p′′, let p be the longest
common prefix of p′ and p′′. Let n′ and n′′ be two nodes s.t. n′ ∈ EN (p′) and
n′′ ∈ EN (p′′). n′ is a closest node of n′′ (n′ ‖ n′′) iff there exists a node n ∈
EN (p) s.t. n is an ancestor of both n′ and n′′.

It follows that the above relation is symmetric, reflexive and intransitive.
Note that, in general, for each node can exist more than one closest node for the
same path.

Example 1. Consider the UnivInfo XML database in Figure 1 and paths p′ =
/faculty/course/name and p′′ = /faculty/course/professor/name. The longest
common prefix between p′ and p′′ is p = /faculty/course. Consider nodes
n′ = 3 ∈ EN (p′) and n′′ = 18 ∈ EN (p′′). n′ is a closest node of n′′ since
there exists a node n = 2 ∈ EN (p) that is a common ancestor of both 3 and 18.
Let’s now consider node n′′′ = 36 ∈ EN (p′′). n′ is not a closest node of n′′′ since
there not exists a node in EN (p) that is a common ancestor of both 3 and 36.

In order to group nodes representing an “instance” of an XFD we introduce
the matching node set, that is formed by an ending node for each path contained
in the XFD. Each node in the set is closest of all other nodes in the set.

Definition 12 (Matching Node Set). Given an XML tree T and a set of
paths P = p1, . . . , pm, a matching node set of P in T is a set Mns(P) =
{z1, . . . , zm} of nodes of ξ(T) s.t. for each i, j ∈ [1..m], zi ∈ EN (pi) ∧ zi ‖ zj.

Note that, in the above definition, the extended tree of T is employed. This
is needed in order that each ending node of any path in P belongs to at least
one matching node set. Indeed, if an incomplete tree were used, it could happen
that for an ending node n of a path p ∈ P there not exists an ending node n′

of an other path p′ ∈ P s.t. n ‖ n′. Thus, n would not belong to any matching
node set.

Given a set of paths P, a matching node set M of P and a path p ∈ P, we
denote as Mp the node of M belonging to EN (p).

In order to deal with approximate XFDs, we need a way to evaluate when
two distinct “instances” of an XFD have to be considered similar. Since the
ending nodes are trees, we employ the tree edit distance [3] as similarity measure.
Roughly, this kind of distance between two trees is based on the computation
of sequences of edit operations needed to transform a tree in the other. The
edit operations are node insertions, node deletions and node renamings. Each
operation is associated with a cost and the cost of a sequence of edit operations
is the sum of the costs of each operation composing the sequence. The tree edit
distance is defined as the cost of the sequence having minimum cost.

Definition 13 (Tree Distance). Let T and T ′ be two XML trees and ϕ be a
cost function. An edit script S between T and T ′ is a sequence of edit operations
turning T into T ′. The cost of S is the sum of the costs of the operations in S
employing ϕ. The tree distance between T and T ′ is

91 Fabio Fassetti and Bettina Fazzinga

δ(T , T ′) =
cost(S∗)

|T |+ ins(T , T ′)
where S∗ is the edit script having minimum cost, cost indicates the cost of the

edit script and ins denotes the number of node insertions necessary to transform
T in T ′.

Note that the edit distance between two trees T and T ′ is normalized w.r.t.
the sum of the size of T and the number of node insertions necessary to transform
the former tree in the latter one.

Now, we employ the above concepts for measuring the distance between
matching node sets.

Definition 14 (Mns Distance). Let P and P ′ ⊆ P be two sets of paths, and
let M and Q be two matching node sets of P. The distance between M and Q
w.r.t. P ′ is

µP ′(M, Q) = max
p∈P ′(δ(Mp, Qp))

3.2 Approximate Satisfaction of XFDs

Now, XFDs approximately satisfied by an XML tree can be formally defined.

Definition 15 (σ-approximation). Let f : P → q be an XFD, T be an XML
tree, R be a set of matching node sets of (P ∪{q}) in T and σ be a dissimilarity
threshold. R σ-approximately satisfies f (R |=σ f) if, for every two distinct
matching node sets M1,M2 ∈ R, it holds that

µP (M1,M2) ≤ σ ⇒ µ{q}(M1,M2) ≤ σ (1)

In the following a set of matching node sets that σ-approximately satisfies
an XFD is called solving set of the XFD.

Example 2. Consider the XML tree in Figure 1, the XFD f : /faculty/course/name →
/faculty/course/book and σ = 0.3. Consider the set of matching node sets of
{/faculty/course/name, /faculty/course/book}

R = {{3, 5}, {23, 25}, {41, 43}, {61, 63}}
The pairs judged to be similar on the left part of the XFD are ({3, 5}, {23, 25}),

({3, 5}, {41, 43}). Since these pairs also satisfy the right side of implication (1)
(the distance between node 5 and 25, between node 5 and 43 and between node
25 and 43 is 0.29 ≤ σ), R σ-approximately satisfies f .

Let’s now consider f ′ : /faculty/course/professor → /faculty/course/semester
and the set of matching node sets of P = {/faculty/course/professor, /faculty
/course/semester}

R = {{17, 20}, {35, 38}, {55, 58}, {73, 76}}
The pair ({17,20},{35,38}) satisfies the left side of implication (1), but it does

not satisfy the right side of implication (1). Then, R does not σ-approximately
satisfies f .

92Approximate functional dependencies for XML data

Given an XFD f , several solving sets can be extracted from a document
and some of these, called maximal solving sets, have maximum cardinality. More
formally, a solving set R is said maximal if there not exists another solving set
R′ s.t. |R| < |R′|. Note that can exist more than one maximal solving set. The
value of the cardinality of a maximal solving set is exploited to compute the
percentage of the whole database that satisfies f .

Now, the formal definition of approximate XFD satisfaction can be given.

Definition 16 (Approximate Satisfaction of an XFD). Let f : P → q be
an XFD, T be an XML tree, σ be a dissimilarity threshold and θ be a satisfaction
threshold. Let R be the set of all the matching node sets of P ∪ {q} in T and
R′ be a maximal solving set. T (σ, θ)-approximately satisfies f (T |=θ

σ f) if
|R′|
|R| ≥ θ.

Example 3. Consider XML tree in Figure 1 again, suppose σ = 0.3 and θ = 0.7
and consider the XFD

f : /faculty/course/name → /faculty/course/credits

The matching node sets of {/faculty/course/name}∪{/faculty/course/credits}
are

M1 = {3, 13},M2 = {23, 31},M3 = {41, 51},M4 = {61, 69}
Let R = {M1,M2,M3,M4} be the set of all the matching node sets. In order
to valuate the confidence of f we have to compute the solving sets. It can be
easily seen that the subsets R′ = {M2, M3,M4} and R′′ = {M1,M4} are solving
sets since they satisfy f . Note that, for example, M1 and M2 can not belong
to the same solving set since their distance w.r.t. /faculty/course/name is 0 <
σ but their distance w.r.t. /faculty/course/credits is 1 > σ, and then they
violate f . The maximal solving set is R′. Since |R′|/|R| = 3/4 = 0.75, then T
(σ, θ)-approximately satisfies f .

4 Inferring XFDs

In this section, we formally define the problem of inferring approximate XFDs
from an XML document.

Not all the XFDs approximately satisfied by an XML document need to be
inferred, since some of them are deducible from others without any computations
and some others are not interesting.

Consider, for example, the XML tree T in Figure 1, σ = 0.3, θ = 0.7, and
the following subset of XFDs (σ, θ)-approximately satisfied by T :

F = {/faculty/course/name → /faculty/course/book; (1)

/faculty/course/name, /faculty/course/year → /faculty/course/book; (2)

/faculty/course/name, /faculty/course/year → /faculty/course/year; (3)

/faculty/course/name → /faculty/course/book/title; (4)

/faculty/book → /faculty/course/name; (5)

/faculty/book/title → /faculty/course/name;} (6)

93 Fabio Fassetti and Bettina Fazzinga

It is easily to see that only (1) and (5) are interesting and then the others
should not be extracted. Indeed, (2) is negligible since it carries an information
that is already mined by means of (1). (3) is always satisfied, since the path
used as right part is included in the set of paths used as left parts. Finally, (4)
and (6) are not interesting, since the information carried by them is embedded
in (1) and (5) respectively.

Thus, to avoid functional dependencies that are trivially satisfied or non-
significative, we give a definition of meaningless XML functional dependencies.

Definition 17 (Meaningless XFDs). Let T be an XML tree and f : {p1, . . . , pk} →
q be an XFDs. f is said to be trivial if one of the following conditions holds:

1. there exists i ∈ [1..k] s.t. pi = q.
2. there exist i, j ∈ [1..k], j 6= i s.t. pi is a prefix of pj;

In the first case, the XFD is always satisfied, thus is needless to be considered
in the XFD inference phase. In the second case, the XFD is not significative since
the information contained in pj is redundant.

In order to reduce the number of XFDs to be examined, we introduce a
precedence relation between XFDs.

Definition 18 (XFDs Precedence). Let T be an XML tree and f : {p1, . . . , ph} →
q and f ′ : {p′1, . . . , p′k} → q′ be two XFDs. f precedes f ′ (f ≺ f ′) if one of the
following conditions holds:

1. q = q′, k > h and ∀i ∈ [1..h], pi = p′i;
2. q is a prefix of q′, k = h and ∀i ∈ [1..h]pi is a prefix of p′i.

In particular, if f is (σ, θ)-approximately satisfied then f ′ is also (σ, θ)-approximately
satisfied in the first case, whereas f ′ is needless to be inferred in the second case.

Then, the goal is to extract a set of functional dependencies that is minimal
in according to the following definition:

Definition 19. Let F be a set of non-meaningless XFDs, F is minimal if

∀f ∈ F ,@f ′ ∈ F such that f ′ 6= f ∧ f ′ ≺ f

Now, the task of inferring XFDs approximately satisfied by an XML tree can
be formally presented.

Definition 20. Given an XML tree T , a dissimilarity threshold σ and a sat-
isfaction threshold θ, the XFD inference problem is the extraction from T of the
minimal set F of XFDs, such that ∀f ∈ F f is (σ, θ)-approximately satisfied by
T (T |=θ

σ F).

Due to lack of space, we omit the algorithm solving the XFD inference problem.

94Approximate functional dependencies for XML data

5 Conclusions

In this paper we defined approximate XFDs, namely XFDs approximately sat-
isfied (according to tree similarity) by a certain part of an XML document.
Furthermore, we addressed the problem of inferring approximate XFDs from
data.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. M. Arenas and L. Libkin. A normal form for xml documents. TODS, 29:195–232,
2004.

3. Philip Bille. A survey on tree edit distance and related problems. TCS, 337(1-
3):217–239, 2005.

4. D. Bitton, J. Millman, and S. Torgersen. A feasibility and performance study of
dependency inference. In ICDE, pages 635–641, 1989.

5. T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language
(XML) 1.0 - W3C recommendation. Technical Report REC-xml-19980210, 1998.

6. P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, and W. C. Tan. Reasoning
about keys for xml. IS, 28(8):1037–1063, 2003.

7. P. Buneman, W. Fan, and S. Weinstein. Path constraints in semistructured
databases. JCSS, 61(2):146–193, 2000.

8. W. Fan and J. Siméon. Integrity constraints for xml. In PODS, pages 23–34, 2000.
9. Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. Tane: An efficient al-

gorithm for discovering functional and approximate dependencies. Comput. J.,
42(2):100–111, 1999.

10. J. Kivinen and H. Mannila. Approximate inference of functional dependencies from
relations. TCS, 149:129–149, 1995.

11. H. Mannila and K.-J. Räihä. Algorithms for inferring functional dependencies from
relations. DKE, 12(1):83–99, 1994.

12. N. Novelli and R. Cicchetti. Functional and embedded dependency inference: a
data mining point of view. IS, 26(7):477–506, 2001.

13. I. Savnik and P. A. Flach. Bottom-up induction of functional dependencies from
relations. In AAAI-93 Workshop: Knowledge Discovery in Databases, pages 174–
185, 1993.

14. J. D. Ullman. Principles of Database Systems, 2nd Edition. Computer Science
Press, 1982.

15. M. W. Vincent, J. Liu, and C. Liu. Strong functional dependencies and their
application to normal forms in xml. TODS, 29(3):445–462, 2004.

16. C. Yu and H. V. Jagadish. Efficient discovery of xml data redundancies. In VLDB,
pages 103–114, 2006.

95 Fabio Fassetti and Bettina Fazzinga

