Update Support for Database Views via Cooperation

Stephen J. Hegner Peggy Schmidt
Umed University Christian-Albrechts-University of Kiel
Department of Computing Science Department of Computer Science
Sweden Germany

The Update Problem for Database Views

e On the underlying states, the view map- Main Schema
ping is generally surjective (onto) but
not injective (one-to-one). °

View Schema

1/ 11

The Update Problem for Database Views

e On the underlying states, the view map- Main Schema
ping is generally surjective (onto) but
not injective (one-to-one).

e Thus, a view update has many possible
reflections to the main schema.

View Schema

1/ 11

The Update Problem for Database Views

e On the underlying states, the view map- Main Schema
ping is generally surjective (onto) but
not injective (one-to-one).

e Thus, a view update has many possible
reflections to the main schema.

e The problem of identifying a suitable re-
flection is known as the update transla-
tion problem or update reflection prob-
lem.

View Schema

1/ 11

The Update Problem for Database Views

e On the underlying states, the view map- Main Schema
ping is generally surjective (onto) but
not injective (one-to-one). °

e Thus, a view update has many possible
reflections to the main schema.

e The problem of identifying a suitable re-
flection is known as the update transla-
tion problem or update reflection prob-
lem.

e With a reasonable definition of suitabil-
ity, it may not be the case that every
view update has a suitable translation.

View Schema

1/ 11

The Constant-Complement Strategy

Main Schema

View Schema

2 /11

The Constant-Complement Strategy

e In the constant-complement strategy Main Schema

[Bancilhon and Spyratos 81|, [Hegner 03],
the main schema is decomposed into two
meet-complementary views.

View Schema

The Constant-Complement Strategy

e In the constant-complement strategy Main Schema

[Bancilhon and Spyratos 81|, [Hegner 03],
the main schema is decomposed into two
meet-complementary views.

e One is isomorphic to the view schema and tracks l

its updates exactly.

View Schema

The Constant-Complement Strategy

e In the constant-complement strategy Main Schema

[Bancilhon and Spyratos 81|, [Hegner 03],
the main schema is decomposed into two
meet-complementary views.

e One is isomorphic to the view schema and tracks
its updates exactly.

e The other is held constant for all updates to the &\
VIiew.

View Schema

The Constant-Complement Strategy

e In the constant-complement strategy Main Schema

[Bancilhon and Spyratos 81|, [Hegner 03],
the main schema is decomposed into two
meet-complementary views.

e One is isomorphic to the view schema and tracks
its updates exactly.

e The other is held constant for all updates to the
view.
e It can be shown [Hegner 03] that this strategy is

View Schema

precisely that which avoids all update anomalies.

The Constant-Complement Strategy

In the constant-complement strategy
[Bancilhon and Spyratos 81|, [Hegner 03],
the main schema is decomposed into two
meet-complementary views.

One is isomorphic to the view schema and tracks
its updates exactly.

The other is held constant for all updates to the
VIiew.

It can be shown [Hegner 03] that this strategy is
precisely that which avoids all update anomalies.

Main Schema

T
N

View Schema

Consequently, it is quite limited in the view updates which it allows.

The Constant-Complement Strategy

e In the constant-complement strategy Main Schema

[Bancilhon and Spyratos 81|, [Hegner 03],
the main schema is decomposed into two
meet-complementary views.

e One is isomorphic to the view schema and tracks
its updates exactly.

e The other is held constant for all updates to the
view.
e It can be shown [Hegner 03] that this strategy is

View Schema

precisely that which avoids all update anomalies.

e Consequently, it is quite limited in the view updates which it allows.

Question: How can updates which are not supported by constant complement be
realized?

Moving Beyond the Constant-Complement Strategy

e Over the years, many extensions to the constant- Main Schema

complement strategy have been proposed; all
share the following problems. W

View Schema

Moving Beyond the Constant-Complement Strategy

e Over the years, many extensions to the constant-
complement strategy have been proposed; all
share the following problems.

e Visibility problem: Part of the reflected update
Is not visible within the view.

Main Schema

&\
\ \
\ \,

\ A

View Schema

7

/7

Moving Beyond the Constant-Complement Strategy

e Over the years, many extensions to the constant-
complement strategy have been proposed; all
share the following problems.

e Visibility problem: Part of the reflected update
Is not visible within the view.

e Permission problem: The user of the view lacks
the necessary access privileges to effect the re-
flected update to the main schema.

Main Schema

View Schema

Moving Beyond the Constant-Complement Strategy

e Over the years, many extensions to the constant-
complement strategy have been proposed; all
share the following problems.

e Visibility problem: Part of the reflected update
Is not visible within the view.

e Permission problem: The user of the view lacks
the necessary access privileges to effect the re-
flected update to the main schema.

Proposed Solution: Update by cooperation

Main Schema

View Schema

Moving Beyond the Constant-Complement Strategy

e Over the years, many extensions to the constant-
complement strategy have been proposed; all

Main Schema

share the following problems.

e Visibility problem: Part of the reflected update
Is not visible within the view.

e Permission problem: The user of the view lacks
the necessary access privileges to effect the re-
flected update to the main schema.

View Schema

Proposed Solution: Update by cooperation

e The user of the view enlists the cooperation of other users to address both the
visibility problem and the permission problem.

Moving Beyond the Constant-Complement Strategy

e Over the years, many extensions to the constant-
complement strategy have been proposed; all
share the following problems.

Main Schema

e Visibility problem: Part of the reflected update
Is not visible within the view.

e Permission problem: The user of the view lacks
the necessary access privileges to effect the re-
flected update to the main schema.

View Schema

Proposed Solution: Update by cooperation

e The user of the view enlists the cooperation of other users to address both the
visibility problem and the permission problem.

e All users operate within the limits of their vision of the main schema and their
access rights.

The Component Model of Database Schemata

e The idea of modelling a large database schema as the interconnection of smaller
database components has been forwarded recently by Thalheim [DKE2005].

4 /11

The Component Model of Database Schemata

e The idea of modelling a large database schema as the interconnection of smaller
database components has been forwarded recently by Thalheim [DKE2005].

e The model employed here is due to Hegner [EJC07], and is based upon
communicating views, illustrated by a simple example below.

4 /11

The Component Model of Database Schemata

e The idea of modelling a large database schema as the interconnection of smaller
database components has been forwarded recently by Thalheim [DKE2005].

e The model employed here is due to Hegner [EJC07], and is based upon
communicating views, illustrated by a simple example below.

e Define the component K 5 = ((R[AB],{A — B}), {Hg[AB]})

(RIAB),{A — B})

4 /11

The Component Model of Database Schemata

e The idea of modelling a large database schema as the interconnection of smaller
database components has been forwarded recently by Thalheim [DKE2005].

e The model employed here is due to Hegner [EJC07], and is based upon
communicating views, illustrated by a simple example below.

e Define the component K45 = ((R[AB],{A — B}), {H};MB]})
and Kpo = (R[BC], {B — C}), {l3""})

(RIAB),{A — B}) (RIBC)AB — C})

4 /11

The Component Model of Database Schemata

e The idea of modelling a large database schema as the interconnection of smaller
database components has been forwarded recently by Thalheim [DKE2005].

e The model employed here is due to Hegner [EJC07], and is based upon
communicating views, illustrated by a simple example below.

e Define the component K45 = ((R[AB],{A — B}), {H};MB]})
and Kpo = (R[BC], {B — C}), {l3""})

e Connecting the ports of these two components results in a combination which is
isomorphic to (R|ABC|,{A — B, B — C'}).

AB A—>B} BC B—>C}

4 /11

The Component Model of Database Schemata

e The idea of modelling a large database schema as the interconnection of smaller
database components has been forwarded recently by Thalheim [DKE2005].

e The model employed here is due to Hegner [EJC07], and is based upon
communicating views, illustrated by a simple example below.

e Define the component K45 = ((R[AB],{A — B}), {H};MB]})
and Kpo = (R[BC], {B — C}), {l3""})

e Connecting the ports of these two components results in a combination which is
isomorphic to (R[ABC],{A — B,B — C'}).

(RIAB).{A — B}) (RIBC){B — C})

e This recaptures lossless and dependency-preserving decomposition, but as a
composition rather than as a decomposition.

4 /11

The Propagation of Updates through Components
O I
[« O
O N

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
Ol
-0
(D <]

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.

e This may require an update to the port schema V; as well.
()]
-0
Ol

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.
Ol
-0
(D <]

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.

e This process continues... @
[O
O |

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.

e This process continues... @
[O
O |

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.

e This process continues... @
[O
O—_ |

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.

e This process continues... @
[O
O]

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.

e This process continues... @
[@1 =
O]

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.

e This process continues... @
[@1
O]

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.

e This process continues... @
7 e V7
O]

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.

e This process continues... @
7 e V7
O]

o Key issues:

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.

e This process continues... @
7 e V7
O |

o Key issues:
e Database consistency: Actual database update must be deferred until the
negotiation process is complete.

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.

e This process continues... @
7 e V7
O |

o Key issues:
e Database consistency: Actual database update must be deferred until the
negotiation process is complete.

e Termination: The negotiation process must not go on endlessly.

5/ 11

The Propagation of Updates through Components

e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.

e This process continues... @
7 e V7
O |

o Key issues:
e Database consistency: Actual database update must be deferred until the
negotiation process is complete.

e Termination: The negotiation process must not go on endlessly.

e An architecture for the support of such cooperative updates is needed.

5/ 11

The Architecture of Cooperative Update Management
Q

I e O I
O

The Architecture of Cooperative Update Management
Q

W

e To each component C; corresponds a pending-update register PendUpd(C;).

K e O I

The Architecture of Cooperative Update Management

@ PendUpd(C3)
PendUpd(C1) @ PendUpd(C53)
@ PendUpd(C})

e To each component C; corresponds a pending-update register PendUpd(C;).

The Architecture of Cooperative Update Management

@ PendUpd(C3)
PendUpd(C1) @ PendUpd(C53)
@ PendUpd(C})

e To each component C; corresponds a pending-update register PendUpd(C;).

e To each view schema V; is associated a port-status register PSR(C;, V;) for each
component C; which is connected to it.

The Architecture of Cooperative Update Management

PendUpd(C3)

PendUpd(C1) PendUpd(C53)

PendUpd(C})

e To each component C; corresponds a pending-update register PendUpd(C;).

e To each view schema V; is associated a port-status register PSR(C;, V;) for each
component C; which is connected to it.

The Architecture of Cooperative Update Management

PendUpd(C3)

PendUpd(C1) PendUpd(C53)

PendUpd(C})

e To each component C; corresponds a pending-update register PendUpd(C;).

e To each view schema V; is associated a port-status register PSR(C;, V;) for each
component C; which is connected to it.

e These additional registers are part of the control structure, and are in addition to
the database itself.

Operation of Cooperative Update Management

PendUpd(C3)

PendUpd(C1) PendUpd(C53)

PendUpd(C})

e All port-status registers are initially null.

7/ 11

Operation of Cooperative Update Management

PendUpd(C3)

PendUpd(C1) PendUpd(C53)

PendUpd(C})

e All port-status registers are initially null.

e An update to a component schema

7/ 11

Operation of Cooperative Update Management

PendUpd(C3)

PendUpd(C1) PendUpd(C53)

PendUpd(C})

e All port-status registers are initially null.

e An update to a component schema places the corresponding projection into the
port status registers of its neighbors.

7/ 11

Operation of Cooperative Update Management

PendUpd(C3)

PendUpd(C1) PendUpd(C53)

PendUpd(C})

e All port-status registers are initially null.

e An update to a component schema places the corresponding projection into the
port status registers of its neighbors.

e The neighbor then identifies a suitable /ifting of the view state in the port-status
register to its schema, and resets that port-status register to null.

7/ 11

Operation of Cooperative Update Management

PendUpd(C3)

PendUpd(C1) PendUpd(C53)

PendUpd(C})

e All port-status registers are initially null.

e An update to a component schema places the corresponding projection into the
port status registers of its neighbors.

e The neighbor then identifies a suitable /ifting of the view state in the port-status
register to its schema, and resets that port-status register to null.

e The process repeats, and is nondeterministic.

7/ 11

Operation of Cooperative Update Management

PendUpd(C3)

PendUpd(C1) PendUpd(C53)

PendUpd(C})

e All port-status registers are initially null.

e An update to a component schema places the corresponding projection into the
port status registers of its neighbors.

e The neighbor then identifies a suitable /ifting of the view state in the port-status
register to its schema, and resets that port-status register to null.

e The process repeats, and is nondeterministic.

7/ 11

Operation of Cooperative Update Management

PendUpd(C3)

PendUpd(C1) PendUpd(C53)

PendUpd(C})

e All port-status registers are initially null.

e An update to a component schema places the corresponding projection into the
port status registers of its neighbors.

e The neighbor then identifies a suitable /ifting of the view state in the port-status
register to its schema, and resets that port-status register to null.

e The process repeats, and is nondeterministic.

7/ 11

Operation of Cooperative Update Management

PendUpd(C3)

PendUpd(C1) PendUpd(C53)

PendUpd(C})

e All port-status registers are initially null.

e An update to a component schema places the corresponding projection into the
port status registers of its neighbors.

e The neighbor then identifies a suitable /ifting of the view state in the port-status
register to its schema, and resets that port-status register to null.

e The process repeats, and is nondeterministic.

7/ 11

Operation of Cooperative Update Management

PendUpd(C3)

PendUpd(C1)

PendUpd(C53)

PendUpd(C})

e All port-status registers are initially null.

e An update to a component schema places the corresponding projection into the
port status registers of its neighbors.

e The neighbor then identifies a suitable /ifting of the view state in the port-status
register to its schema, and resets that port-status register to null.

e The process repeats, and is nondeterministic.

7/ 11

Operation of Cooperative Update Management

PendUpd(C3)

PendUpd(C1)

PendUpd(C53)

PendUpd(C})

e All port-status registers are initially null.

e An update to a component schema places the corresponding projection into the
port status registers of its neighbors.

e The neighbor then identifies a suitable /ifting of the view state in the port-status
register to its schema, and resets that port-status register to null.

e The process repeats, and is nondeterministic.

7/ 11

Operation of Cooperative Update Management

PendUpd(C3)

PendUpd(C1) PendUpd(C)

PendUpd(C})

e All port-status registers are initially null.

e An update to a component schema places the corresponding projection into the
port status registers of its neighbors.

e The neighbor then identifies a suitable /ifting of the view state in the port-status
register to its schema, and resets that port-status register to null.

e The process repeats, and is nondeterministic.

7/ 11

Example: Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

Employee Secretariat

Travelgecact
EmplD
ConfID
Amnt

Accounting

Example: Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

Employee Secretariat

Travelgecact
EmplD
ConfID
Amnt

e Suppose that employee Lena wishes to travel.

Accounting

Example: Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

Employee Secretariat

Travelgecact
EmplD
ConfID
Amnt

e Suppose that employee Lena wishes to travel.

e She indicates this via an insertion request Accounting
into the schema of component Employee.

Example: Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

Secretariat

Employee
Travelgecact
EmplD
ConfID
Amnt

e Suppose that employee Lena wishes to travel.

e She indicates this via an insertion request Accounting
into the schema of component Employee.

e Such a request is typically in the form of a finite ranked set of alternatives.

Example: Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID —— ConfID

Amnt
NDays
SuplD

Employee Secretariat

e Suppose that employee Lena wishes to travel.

e She indicates this via an insertion request Accounting
into the schema of component Employee.

e Such a request is typically in the form of a finite ranked set of alternatives.

{Travelgmp|Lena, ADBIS, e, da,n] | €800 < ey <€2000, 5 <dy <10} U
{Travelgmp|Lena, DEXA, ep,dp,n| | €1000 < ep < €2000, 3 < dp < 10}

Example: Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID —— ConfID

Amnt
NDays
SuplD

Employee Secretariat

e Suppose that employee Lena wishes to travel.

e She indicates this via an insertion request Accounting
into the schema of component Employee.

e Such a request is typically in the form of a finite ranked set of alternatives.

{Travelgmp|Lena, ADBIS, e, da,n] | €800 < ey <€2000, 5 <dy <10} U
{Travelgmp|Lena, DEXA, ep,dp,n| | €1000 < ep < €2000, 3 < dp < 10}

e ADBIS is always preferred to DEXA.
e For a given conference, more money and days are always preferred to fewer.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

Secretariat

Employee
Travelgecact
EmplD
ConfID
Amnt

Accounting

e The evolution of a specific update request will now be illustrated.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

Secretariat

Travelgecact
EmplD
ConfID
Amnt

+ V ({Travelgmp[Lena, ADBIS, e 4, d 4, 1]
| 800 < e4 < 2000,5 < dyq < 10}

U {Travelgmp[Lena, DEXA,ep,dp, 1] :
| 1000 < ep < 2000,3 < dp < 10}) Accounting

e First, the desired ranked update is entered into the pending-update register for
Employee. Notation:

e |+ = Insert.

e \/ = Choose one of the alternatives.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmplID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

Employee Secretariat

Travelgecact
EmplD
ConfID
Amnt

| 800 < eq < 2000,5 < dg < 10}
U {Travelgmp[Lena, DEXA, ep, dp, 1]
| 1000 < ep < 2000,3 < dp < 10})

+ V ({Travelgmpsct[Lena, ADBIS, e 4, d 4]
| 800 < e < 2000,5 < dy < 10}

U {Travelgmpsct[Lena, DEXA,ep, dp] :
| 1000 < ep < 2000,3 < dp < 10}) Accounting

) N

+\/({Travelgmp[Lena, ADBIS, e 4, d, 11]

e This update is then projected to the port-status register which connects Employee
to Secretariat.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmplID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

N T
Secretariat \\

+ V ({Travelgmpsct[Lena, ADBIS, e 4, d 4] + V ({Travelsc[Lena, ADBIS, e 4, d 4, Steve]
| 800 < ey <2000,5 <da <10} | 800 < ea <2000,5 <da <10}

Employee

| 800 < eq < 2000,5 < dg < 10}
U {Travelgmp[Lena, DEXA, ep, dp, 1]
| 1000 < ep < 2000,3 < dp < 10})

) N

+\/({Travelgmp[Lena, ADBIS, e 4, d, 11]

U {Travelgmpsct[Lena, DEXA,ep, dp] U {Travels.[Lena, DEXA, ep, dp, Peggy]
1000 < ep < 2000,3 < dp < 10}) | 1000 < ep < 2000,3 < dp < 10})

e The user of the Secretariat component then lifts this update to one on that
component. It is placed in the pending-update register for that component.

e Note that decisions must be made.

e One of many possible liftings must be selected.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays

Notes SuplD ~ T
Employee Secretariat \\
+V/({Travelgmp[Lena, ADBIS, e 1, 4, 1] -
{ 800 < “ < 2000,5 < dy < 1(}3} + V ({Travelsct[Lena, ADBIS, e 4, d 4, Steve]
U {Travelgyp[Lena, DEXA,ep,dp,n
| 1000 < ep < 2000,3 < dp < 10}) | 800 S €A S 2000, 5} S dA S 10}

U {Travels.[Lena, DEXA, ep, dp, Peggy]
| 1000 < ep < 2000,3 < dp < 10})

e The port-status register is then cleared, since this update has been processed.

Example:

Evolution of Travel Request and Authorization

Travelgmp
EmplID
ConfID

Amnt
NDays
Notes

Employee

+ \V/({Travelgmp[Lena, ADBIS, e 4, d 4, 1]
| 800 < e4 < 2000,5 < ds < 10}

U {Travelgmp[Lena, DEXA, ep, dp, 1]
[1000 < ep < 2000,3 < dp < 10})

+ V ({ Travelsecmgt[Lena, ADBIS, d 4, Steve]

|5<da <10}

U {Travelsecmgt[Lena, DEXA, dp, Peggy]
|3 <dp < 10})

Management
Travelgt

T EmplID

ConfID

Amnt
NDays
SuplD

Secretarfat

+\V ({Trge® [Lena, ADBIS, ¢ 4, d 4, Steve]
800 < es < 2000,5 < dy <10}
{Travelsct[Lena, DEXA, ep, dp, Peggy]
| 1000 < ep < 2000,3 < dp < 10})

Travelgecact
EmplD
ConfID
Amnt

+ V ({Travelsecact[Lena, ADBIS, e 4]
| 800 < es <2000}

U {Travelsecact[Lena, DEXA, e 4]
1000 < e4 < 2000})

Accounting

e This lifted update is then projected into the appropriate port-status registers which
connect Secretariat to Management and Accounting.

e It is not projected back onto the port-status register which is connected to
Employee, because the new value would be the same as the old one.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmplID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes

Employee

Travelgecact
EmplD
ConfID
Amnt

800 < es < 2000,5 < dy <10}
{Travelsct[Lena, DEXA, ep, dp, Peggy]
| 1000 < ep < 2000,3 < dp < 10})

| 800 < eq < 2000,5 < dg < 10}
U {Travelgmp[Lena, DEXA, ep, dp, 1]
| 1000 < ep < 2000,3 < dp < 10})

) N

+ \V/ ({Travelgmp[Lena, ADBIS, e 4, d 4, 1]] ct|Lena, ADBIS, e4,d 4, Steve]]

|5§dA 310} | 800 < e4 < 2000}

U {Travelsecact[Lena, DEXA, e 4]
| 1000 < e4 < 2000})

+ \/({TravelseCMgt [Lena, ADB|S, da, Steve] [+ \/({TravelsecAct[Lena,ADBIS,eA]] ACCOU nt| ng

U {Travelsecmgt[Lena, DEXA, dp, Peggy]
|3 <dp < 10})

e First consider lifting the projected update to the Management component.

e Again, there are decisions to be made.

Example: Evolution of Travel Request and Authorization

Management
Travelgmp Travelgy
EmplID T EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD
Employee SecreLarfat
+ V({Travelgmp[Lena, ADBIS, e 4, d 4, 1] +\/({Trge®:[Lena, ADBIS, e 4, d 4, Steve] Travelgecact T
| 800 < eq < 2000,5 < dg < 10} 00 < e4 < 2000,5 < du < 10} EmplD
U {Travelgmp[Lena, DEXA, ep, dp, 1] {Travels.[Lena, DEXA, ep, dp, Peggy] ConidD
| 1000 < ep < 2000,3 < dp < 10}) | 1000 < ep < 2000,3 < dp < 10}) A

—|— \/({TravelseCMgt [Lena, ADB'S, dA, Steve] + ravelsecact[Lena, ADBIS, e 4]
| 5 S dA S 10} 00 o 4 000

Accounting

+Apprvpgt [Lena, ADBIS, 5, Steve| §

U {Travelsecmgt[Lena, DEXA, dp, Peggy]
|3 <dp < 10})

e Manager Steve processes the request, and decides to allow Lena to attend ADBIS
for five days.

Example: Evolution of Travel Request and Authorization

Travelgmp
EmplID
ConfID

Amnt
NDays
Notes

Employee

| 800 < eq < 2000,5 < dg < 10}
U {Travelgmp[Lena, DEXA, ep, dp, 1]
| 1000 < ep < 2000,3 < dp < 10})

) N

+\/({Travelgmp[Lena, ADBIS, e 4, d, 11]

+Travelsecmgt[Lena, ADBIS, 5, Steve]

Management

Travelgt
EmplID
ConfID

Amnt
NDays
SuplD

Secrejarfat
1 \/({Zp#®s.[Lena, ADBIS, e 4, d 4, Steve] Travelgecact T
800 < eq < 2000,5 < d4 < 10} EmplD
U {Travelsct[Lena, DEXA, ep, dp, Peggy] Cont#)
| 1000 < ep < 2000,3 < dp < 10}) e

+ ravelsecact[Lena, ADBIS, e 4]
200 < o 000

+Apprvpgt [Lena, ADBIS, 5, Steve| §

Accounting

e The value in the port-status register for the Management component is removed,
but a new value for the port-status register for Secretariat is inserted.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Travelsecnvigt[Lena, ADBIS, 5, Steve]

+Apprvygt [Lena, ADBIS, 5, Steve]

Secretariat

+ \V/ ({Travelgmp[Lena, ADBIS, e 4, d 4, 1]] + V({Travels.[Lena, ADBIS, e 4, d 4, Steve]

Employee

Travelgecact
EmplD
ConfID
Amnt

| 800 < esq <2000,5 <dg <10} | 800 < eq <2000,5 <ds <10}
U {Travelgmp[Lena, DEXA, ep, dp, 1] U {Travelsct[Lena, DEXA, ep, dp, Peggy]
[1000 < ep < 2000,3 < dp < 10}) | 1000 < ep < 2000,3 < dp < 10}

) N

+ V ({Travelsecact[Lena, ADBIS, e 4]

Accounting
800 < eq < 2000} + V ({Apprvact[Lena, ADBIS, e 4, Act]

| 800 < e4 < 1000, Act € {Intl1, IntI2}}
U {Apprvaci[Lena, DEXA, 1000, Dom1])

U {Travelsecact[Lena, DEXA, e 4]
1000 < e4 < 2000})

e Now consider lifting the projected update to the Management component.

e The accounting manager decides to award €1000 for the requested travel.

e The appropriate accounts are also identified.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Travelsecnvigt[Lena, ADBIS, 5, Steve] +Apprvygt [Lena, ADBIS, 5, Steve]

Secretariat

[+ V ({Travelgmp[Lena, ADBIS, e4,d A, 1]] + \/({Travels.[Lena, ADBIS, ¢ 4, d 4, Steve]

Employee

Travelgecact
EmplD
ConfID
Amnt

| 800 < esq <2000,5 <dg <10} | 800 < eq <2000,5 <ds <10}
U {Travelgmp[Lena, DEXA, ep, dp, 1] U {Travelsct[Lena, DEXA, ep, dp, Peggy]
[1000 < ep < 2000,3 < dp < 10}) | 1000 < ep < 2000,3 < dp < 10}

—I—\/({TravelseCAct[Lena,ADBIS,eA] +V({APPVVAct[Lena,ADB|S,eA,ACt] Accountlng
| 800 < ey < 1000} | 800 < ey <1000, Act € {Intll, |nt|2}}

U {Travelsecact[Lena, DEXA, 1000]) U {Apprvact|[Lena, DEXA; 1000, Dom1])

e The value in the port-status register for the Accounting component is cleared, but
a new value for the port-status register for Secretariat is inserted.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt —_— Amnt
NDays NDays
Notes SuplD

+Travelsecnvigt[Lena, ADBIS, 5, Steve] +Apprvygt [Lena, ADBIS, 5, Steve]

Employee Secretariat
+V/({Travelgmp[Lena, ADBIS, e.4, d., 1] 4 \/({Travelse;[Lena, ADBIS, €4, d 4, Steve] Travelsecact
| 800 < eq < 2000,5 < dy < 10} | 800 < eq < 2000,5 < dy < 10} EmplD
U {Travelgmp[Lena, DEXA, ep, dp, 1] U {Travelsci[Lena, DEXA, ep, dp, Peggy] COanD
| 1000 < ep < 2000,3 < dp < 10}) | 1000 < ep < 2000,3 < dp < 10}) e

+ V ({Travelsecact[Lena, ADBIS, e 4] ACCO LJ ntl ng
| 800 < es <1000} + V({Apprvact[Lena, ADBIS, e 4, Act]
U {Travelsecact[Lena, DEXA, 1000]) | 800 < e < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e Now the update negotiation propagates back right to left.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Apprvygt [Lena, ADBIS, 5, Steve]

Employee
+ V({Travelgmp[Lena, ADBIS, €4, d 4, 1] Travelgecact TT
[800 < eq < 2000,5 < d4 < 10} EmplD
U {Travelgmp[Lena, DEXA, ep, dp, 1] CO’n,fID
[1000 < ep < 2000,3 < dp < 10}) Amnit
+ V ({ Travelsecact [Lena, ADBIS, e 4] { A[CCOJnt'nf]I
+ V ({Apprvact[Lena, ADBIS, e 4, Act
—I—TraveISeCMgt [Lena, ADBIS, 5, Steve] | 800 < ey < 1000} 800 < ea < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

U {Travelsecact[Lena, DEXA, 1000])

e The two values in the port-status registers must be lifted to the Secretariat
component simultaneously.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmplID T EmplID
ConfID ConfID

Amnt

NDays

SuplD

Amnt
NDays
Notes

+Apprvygt [Lena, ADBIS, 5, Steve]

Employee Ecregartat
Travel
+ V({Travelgmp[Lena, ADBIS, e4,da, 1] SecAct v
02 . < FEATL B & i 1] + \V ({Travelsci[Lena, ADBIS, e 4, 5, Steve] EmplD
U {Travelgmp[Lena, DEXA, ep, dp, 1] ConflD
1000 € ep < 2000,3 < dp < 10}) | 800 < e4 < 1000}) Am;:t
+ \/ ({Travelsecact [Lena, ADBIS, e 4] — A{ccountln,c]z
+ V({Apprvact[Lena, ADBIS, e 4, Act
—I—TraveISeCMgt [Lena, ADBIS, 5, Steve] | 800 < ey < 1000} 800 < e4 < 1000, Act € {Intl1, Intl2}}
_ _ U {Apprvac[Lena, DEXA, 1000, Dom1))

U {Travelsecact[Lena, DEXA, 1000])

e The maximal lifting is selected.

e The Secretariat imposes no additional limitations.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Apprvygt [Lena, ADBIS, 5, Steve]

Employee Ecretariat

Travelgecact
EmplD
ConfID
Amnt

*Vﬁ{;;g“;'ij[;2"35321'5;:@3}“] +\/({Travels.[Lena, ADBIS, e 4, 5, Steve]
| 800 < e < 1000})

U {Travelgmp[Lena, DEXA, ep, dp, 1]
[1000 < ep < 2000,3 < dp < 10})

Accounting

+ V({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e The two port-status registers are now cleared.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Apprvygt [Lena, ADBIS, 5, Steve]

Bcretariat

+ V ({Travs.t[Lena, ADBIS, e 4, 5, Steve]
| 800 < A4 < 1000})

+ V ({Travelgmpsct[Lena, ADBIS, e 4, 5]
| 800 < ey < 1000})

Employee

+ \V/({Travelgmp[Lena, ADBIS, e 4, d 4, 1]
| 800 < e4 < 2000,5 < ds < 10}

Travelgecact
EmplD
ConfID
Amnt

U {Travelgmp[Lena, DEXA, ep, dp, 1]
[1000 < ep < 2000,3 < dp < 10})

Accounting

+ V({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e The update request is then projected to the appropriate port-status register
connecting Secretariat to Employee.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD
+Apprvygt [Lena, ADBIS, 5, Steve]

l o " M
+ V ({Travelsc;[Lena, ADBIS, e 4, 5, Steve]
| 800 < e4 < 1000})

Travelgecact
EmplD

ConfID

Amnt

+ V({Travelgmp[Lena, ADBIS, e 4, 5, 11]
800 < e4 < 1000})

+ V ({Travelgmpsct[Lena, ADBIS, e 4, 5]
| 800 < ey < 1000})

Accounting

+ V({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e This update request is then lifted to the Employee component.

e Again, the maximal lifting is selected.

Example: Evolution of Travel Request and Authorization
Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Apprvygt [Lena, ADBIS, 5, Steve]

l o " M
+ V ({Travelsc;[Lena, ADBIS, e 4, 5, Steve]
| 800 < e4 < 1000})

Travelgecact
EmplD

ConfID
Amnt

+ V({Travelgmp[Lena, ADBIS, e 4, 5, 11]
800 < e4 < 1000})

Accounting

+ V({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e The port-status register is cleared.

e Note that all port-status registers are now clear.

Example: Evolution of Travel Request and Authorization
Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Apprvygt [Lena, ADBIS, 5, Steve]

l o " M
+ V ({Travelsc;[Lena, ADBIS, e 4, 5, Steve]
| 800 < e4 < 1000})

Travelgecact
EmplD

ConfID
Amnt

+Travelgmp[Lena, ADBIS, 1000, 5, 11]

Accounting

+ V({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e Finally, Lena selects an update from amongst the possibilities.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes

+Apprvygt [Lena, ADBIS, 5, Steve]

+Travelse;[Lena, ADBIS, 1000, 5, Steve] | "yeisecac

ConfID
+Travelgmp[Lena, ADBIS, 1000, 5, 11] Amnt

Accounting

+ V({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e This update is propagated to the other components for agreement.

e The messages passed through the port-status registers are not shown.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes

Accounting

+ V ({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e This update is propagated to the other components for agreement.

e The messages passed through the port-status registers are not shown.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes

Accounting

+Apprvaci[Lena, ADBIS, 1000, Intl1]

e This update is propagated to the other components for agreement.
e The messages passed through the port-status registers are not shown.

e Note that a decision of which account to use is made by Accounting, but is not
propagated since it is local to that component.

Example: Evolution of Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes

Accounting

+Apprvaci[Lena, ADBIS, 1000, Intl1]

e Finally, these proposed updates may be committed to the database.

Conclusions and Properties of the Solution Technique

e A model for updating database views which is based upon the cooperation of
interconnected components has been presented.

Conclusions and Properties of the Solution Technique

e A model for updating database views which is based upon the cooperation of
interconnected components has been presented.

e This approach is particularly attractive in situations in which the reflected update

requires access privileges beyond those possessed by the user of the view to be
updated.

Conclusions and Properties of the Solution Technique

e A model for updating database views which is based upon the cooperation of
interconnected components has been presented.

e This approach is particularly attractive in situations in which the reflected update

requires access privileges beyond those possessed by the user of the view to be
updated.

e The formal model is a first, proof-of-concept design, and has the following
limitations:

Conclusions and Properties of the Solution Technique

e A model for updating database views which is based upon the cooperation of
interconnected components has been presented.

e This approach is particularly attractive in situations in which the reflected update

requires access privileges beyond those possessed by the user of the view to be
updated.

e The formal model is a first, proof-of-concept design, and has the following
limitations:

e |t is opportunistic: Individual users cannot control the flow of cooperation.

Conclusions and Properties of the Solution Technique

e A model for updating database views which is based upon the cooperation of
interconnected components has been presented.

e This approach is particularly attractive in situations in which the reflected update

requires access privileges beyond those possessed by the user of the view to be
updated.

e The formal model is a first, proof-of-concept design, and has the following
limitations:

e |t is opportunistic: Individual users cannot control the flow of cooperation.

e It applies only to insertions and deletions.

Conclusions and Properties of the Solution Technique

e A model for updating database views which is based upon the cooperation of
interconnected components has been presented.

e This approach is particularly attractive in situations in which the reflected update

requires access privileges beyond those possessed by the user of the view to be
updated.

e The formal model is a first, proof-of-concept design, and has the following
limitations:
e |t is opportunistic: Individual users cannot control the flow of cooperation.
e It applies only to insertions and deletions.

e Negotiation is monotonic, in that update proposals can only be refined;
additional changes cannot be added after the process begins.

Conclusions and Properties of the Solution Technique

e A model for updating database views which is based upon the cooperation of
interconnected components has been presented.

e This approach is particularly attractive in situations in which the reflected update
requires access privileges beyond those possessed by the user of the view to be
updated.

e The formal model is a first, proof-of-concept design, and has the following
limitations:
e |t is opportunistic: Individual users cannot control the flow of cooperation.
e It applies only to insertions and deletions.

e Negotiation is monotonic, in that update proposals can only be refined;
additional changes cannot be added after the process begins.

e These limitations have the following positive implication.

Conclusions and Properties of the Solution Technique

e A model for updating database views which is based upon the cooperation of
interconnected components has been presented.

e This approach is particularly attractive in situations in which the reflected update

requires access privileges beyond those possessed by the user of the view to be
updated.

e The formal model is a first, proof-of-concept design, and has the following
limitations:
e |t is opportunistic: Individual users cannot control the flow of cooperation.
e It applies only to insertions and deletions.

e Negotiation is monotonic, in that update proposals can only be refined;
additional changes cannot be added after the process begins.

e These limitations have the following positive implication.

Theorem The negotiation process always terminates. Negotiations which proceed
indefinitely are not possible. O

Further Directions

Complex negotiation: The following extensions are particularly crucial.

11 / 11

Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

11 / 11

Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

11 / 11

Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

11 / 11

Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

Locking and implementation mechanism:

11 / 11

Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

Locking and implementation mechanism:

e Multi-user cooperative update requires a suitable locking mechanism.

11 / 11

Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

Locking and implementation mechanism:
e Multi-user cooperative update requires a suitable locking mechanism.

e Implementation of component-based schemata also requires further study.

11 / 11

Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

Locking and implementation mechanism:
e Multi-user cooperative update requires a suitable locking mechanism.

e Implementation of component-based schemata also requires further study.

Relationship to workflow:

11 / 11

Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

Locking and implementation mechanism:
e Multi-user cooperative update requires a suitable locking mechanism.

e Implementation of component-based schemata also requires further study.

Relationship to workflow:

e There is an apparent close connection between the flow of control which
cooperative update mandates and the notion of workflow for complex
Processes.

11 / 11

Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

Locking and implementation mechanism:
e Multi-user cooperative update requires a suitable locking mechanism.

e Implementation of component-based schemata also requires further study.

Relationship to workflow:

e There is an apparent close connection between the flow of control which

cooperative update mandates and the notion of workflow for complex
Processes.

e The precise way in which cooperative update defines constraints on the
possible workflow patterns for the system warrants further study.

11 / 11

	The Update Problem for Database Views
	The Constant-Complement Strategy
	Moving Beyond the Constant-Complement Strategy
	The Component Model of Database Schemata
	The Propagation of Updates through Components
	The Architecture of Cooperative Update Management
	Operation of Cooperative Update Management
	Example: Travel Request and Authorization
	Example: Evolution of Travel Request and Authorization
	Conclusions and Properties of the Solution Technique
	Further Directions

