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not injective (one-to-one). °

e Thus, a view update has many possible
reflections to the main schema.

e The problem of identifying a suitable re-
flection is known as the update transla-
tion problem or update reflection prob-
lem.

e With a reasonable definition of suitabil-
ity, it may not be the case that every
view update has a suitable translation.
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e In the constant-complement strategy Main Schema

[Bancilhon and Spyratos 81|, [Hegner 03],
the main schema is decomposed into two
meet-complementary views.

e One is isomorphic to the view schema and tracks
its updates exactly.

e The other is held constant for all updates to the
view.
e It can be shown [Hegner 03] that this strategy is

View Schema

precisely that which avoids all update anomalies.

e Consequently, it is quite limited in the view updates which it allows.

Question: How can updates which are not supported by constant complement be
realized?
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Moving Beyond the Constant-Complement Strategy

e Over the years, many extensions to the constant-
complement strategy have been proposed; all
share the following problems.

Main Schema

e Visibility problem: Part of the reflected update
Is not visible within the view.

e Permission problem: The user of the view lacks
the necessary access privileges to effect the re-
flected update to the main schema.

View Schema

Proposed Solution: Update by cooperation

e The user of the view enlists the cooperation of other users to address both the
visibility problem and the permission problem.

e All users operate within the limits of their vision of the main schema and their
access rights.
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The Component Model of Database Schemata

e The idea of modelling a large database schema as the interconnection of smaller
database components has been forwarded recently by Thalheim [DKE2005].

e The model employed here is due to Hegner [EJC07], and is based upon
communicating views, illustrated by a simple example below.

e Define the component K45 = ((R[AB],{A — B}), {H};MB]})
and Kpo = (R[BC], {B — C}), {l3""})

e Connecting the ports of these two components results in a combination which is
isomorphic to (R[ABC],{A — B,B — C'}).

(RIAB).{A — B}) (RIBC){B — C})

e This recaptures lossless and dependency-preserving decomposition, but as a
composition rather than as a decomposition.
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e Suppose that an update to the schema of component (' is proposed.
e This may require an update to the port schema V; as well.

e In turn, this will require a lifting of that update to C5.

e This process continues... @
7 e V7
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o Key issues:
e Database consistency: Actual database update must be deferred until the
negotiation process is complete.

e Termination: The negotiation process must not go on endlessly.

e An architecture for the support of such cooperative updates is needed.
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PendUpd(C3)

PendUpd(C1) PendUpd(C53)

PendUpd(C})

e To each component C; corresponds a pending-update register PendUpd(C;).

e To each view schema V; is associated a port-status register PSR(C;, V;) for each
component C; which is connected to it.

e These additional registers are part of the control structure, and are in addition to
the database itself.
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Example: Travel Request and Authorization

Management

Travelgnp Travelgt
EmpID EmplID
ConfID —— ConfID

Amnt
NDays
SuplD

Employee Secretariat

e Suppose that employee Lena wishes to travel.

e She indicates this via an insertion request Accounting
into the schema of component Employee.

e Such a request is typically in the form of a finite ranked set of alternatives.

{Travelgmp|Lena, ADBIS, e, da,n] | €800 < ey <€2000, 5 <dy <10} U
{Travelgmp|Lena, DEXA, ep,dp,n| | €1000 < ep < €2000, 3 < dp < 10}

e ADBIS is always preferred to DEXA.
e For a given conference, more money and days are always preferred to fewer.
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e The evolution of a specific update request will now be illustrated.
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Management
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+ V ({Travelgmp[Lena, ADBIS, e 4, d 4, 1]
| 800 < e4 < 2000,5 < dyq < 10}

U {Travelgmp[Lena, DEXA,ep,dp, 1] :
| 1000 < ep < 2000,3 < dp < 10}) Accounting

e First, the desired ranked update is entered into the pending-update register for
Employee. Notation:

e |+ = Insert.

e \/ = Choose one of the alternatives.
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e This update is then projected to the port-status register which connects Employee
to Secretariat.
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Employee
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) N
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U {Travelgmpsct[Lena, DEXA,ep, dp] U {Travels.[Lena, DEXA, ep, dp, Peggy]
1000 < ep < 2000,3 < dp < 10}) | 1000 < ep < 2000,3 < dp < 10})

e The user of the Secretariat component then lifts this update to one on that
component. It is placed in the pending-update register for that component.

e Note that decisions must be made.

e One of many possible liftings must be selected.
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e The port-status register is then cleared, since this update has been processed.
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Travelgmp
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Notes
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+ \V/({Travelgmp[Lena, ADBIS, e 4, d 4, 1]
| 800 < e4 < 2000,5 < ds < 10}

U {Travelgmp[Lena, DEXA, ep, dp, 1]
[ 1000 < ep < 2000,3 < dp < 10})

+ V ({ Travelsecmgt[Lena, ADBIS, d 4, Steve]

|5<da <10}

U {Travelsecmgt[Lena, DEXA, dp, Peggy]
|3 <dp < 10})

Management
Travelgt

T EmplID

ConfID

Amnt
NDays
SuplD

Secretarfat

+\V ({Trge® [Lena, ADBIS, ¢ 4, d 4, Steve]
800 < es < 2000,5 < dy <10}
{Travelsct[Lena, DEXA, ep, dp, Peggy]
| 1000 < ep < 2000,3 < dp < 10})

Travelgecact
EmplD
ConfID
Amnt

+ V ({Travelsecact[Lena, ADBIS, e 4]
| 800 < es <2000}

U {Travelsecact[Lena, DEXA, e 4]
1000 < e4 < 2000})

Accounting

e This lifted update is then projected into the appropriate port-status registers which
connect Secretariat to Management and Accounting.

e It is not projected back onto the port-status register which is connected to
Employee, because the new value would be the same as the old one.
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e First consider lifting the projected update to the Management component.

e Again, there are decisions to be made.
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Management
Travelgmp Travelgy
EmplID T EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD
Employee SecreLarfat
+ V({Travelgmp[Lena, ADBIS, e 4, d 4, 1] +\/({Trge®:[Lena, ADBIS, e 4, d 4, Steve] Travelgecact T
| 800 < eq < 2000,5 < dg < 10} 00 < e4 < 2000,5 < du < 10} EmplD
U {Travelgmp[Lena, DEXA, ep, dp, 1] {Travels.[Lena, DEXA, ep, dp, Peggy] ConidD
| 1000 < ep < 2000,3 < dp < 10}) | 1000 < ep < 2000,3 < dp < 10}) A

—|— \/({TravelseCMgt [Lena, ADB'S, dA, Steve] + ravelsecact[Lena, ADBIS, e 4]
| 5 S dA S 10} 00 o 4 000

Accounting

+Apprvpgt [Lena, ADBIS, 5, Steve| §

U {Travelsecmgt[Lena, DEXA, dp, Peggy]
|3 <dp < 10})

e Manager Steve processes the request, and decides to allow Lena to attend ADBIS
for five days.
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Travelgmp
EmplID
ConfID

Amnt
NDays
Notes

Employee

| 800 < eq < 2000,5 < dg < 10}
U {Travelgmp[Lena, DEXA, ep, dp, 1]
| 1000 < ep < 2000,3 < dp < 10})

) N

+\/({Travelgmp[Lena, ADBIS, e 4, d, 11 ]

+Travelsecmgt[Lena, ADBIS, 5, Steve]

Management

Travelgt
EmplID
ConfID

Amnt
NDays
SuplD

Secrejarfat
1 \/({Zp#®s.[Lena, ADBIS, e 4, d 4, Steve] Travelgecact T
800 < eq < 2000,5 < d4 < 10} EmplD
U {Travelsct[Lena, DEXA, ep, dp, Peggy] Cont#)
| 1000 < ep < 2000,3 < dp < 10}) e

+ ravelsecact[Lena, ADBIS, e 4]
200 < o 000

+Apprvpgt [Lena, ADBIS, 5, Steve| §

Accounting

e The value in the port-status register for the Management component is removed,
but a new value for the port-status register for Secretariat is inserted.
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Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Travelsecnvigt[Lena, ADBIS, 5, Steve]

+Apprvygt [Lena, ADBIS, 5, Steve]

Secretariat

+ \V/ ({Travelgmp[Lena, ADBIS, e 4, d 4, 1] ] + V({Travels.[Lena, ADBIS, e 4, d 4, Steve]

Employee

Travelgecact
EmplD
ConfID
Amnt

| 800 < esq <2000,5 <dg <10} | 800 < eq <2000,5 <ds <10}
U {Travelgmp[Lena, DEXA, ep, dp, 1] U {Travelsct[Lena, DEXA, ep, dp, Peggy]
[ 1000 < ep < 2000,3 < dp < 10}) | 1000 < ep < 2000,3 < dp < 10}

) N

+ V ({Travelsecact[Lena, ADBIS, e 4]

Accounting
800 < eq < 2000} + V ({Apprvact[Lena, ADBIS, e 4, Act]

| 800 < e4 < 1000, Act € {Intl1, IntI2}}
U {Apprvaci[Lena, DEXA, 1000, Dom1])

U {Travelsecact[Lena, DEXA, e 4]
1000 < e4 < 2000})

e Now consider lifting the projected update to the Management component.

e The accounting manager decides to award €1000 for the requested travel.

e The appropriate accounts are also identified.
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Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Travelsecnvigt[Lena, ADBIS, 5, Steve] +Apprvygt [Lena, ADBIS, 5, Steve]

Secretariat

[+ V ({Travelgmp[Lena, ADBIS, e4,d A, 1] ] + \/({Travels.[Lena, ADBIS, ¢ 4, d 4, Steve]

Employee

Travelgecact
EmplD
ConfID
Amnt

| 800 < esq <2000,5 <dg <10} | 800 < eq <2000,5 <ds <10}
U {Travelgmp[Lena, DEXA, ep, dp, 1] U {Travelsct[Lena, DEXA, ep, dp, Peggy]
[ 1000 < ep < 2000,3 < dp < 10}) | 1000 < ep < 2000,3 < dp < 10}

—I—\/({TravelseCAct[Lena,ADBIS,eA] +V({APPVVAct[Lena,ADB|S,eA,ACt] Accountlng
| 800 < ey < 1000} | 800 < ey <1000, Act € {Intll, |nt|2}}

U {Travelsecact[Lena, DEXA, 1000]) U {Apprvact|[Lena, DEXA; 1000, Dom1])

e The value in the port-status register for the Accounting component is cleared, but
a new value for the port-status register for Secretariat is inserted.
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Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt —_— Amnt
NDays NDays
Notes SuplD

+Travelsecnvigt[Lena, ADBIS, 5, Steve] +Apprvygt [Lena, ADBIS, 5, Steve]

Employee Secretariat
+V/({Travelgmp[Lena, ADBIS, e.4, d., 1] 4 \/({Travelse;[Lena, ADBIS, €4, d 4, Steve] Travelsecact
| 800 < eq < 2000,5 < dy < 10} | 800 < eq < 2000,5 < dy < 10} EmplD
U {Travelgmp[Lena, DEXA, ep, dp, 1] U {Travelsci[Lena, DEXA, ep, dp, Peggy] COanD
| 1000 < ep < 2000,3 < dp < 10}) | 1000 < ep < 2000,3 < dp < 10}) e

+ V ({Travelsecact[Lena, ADBIS, e 4] ACCO LJ ntl ng
| 800 < es <1000} + V({Apprvact[Lena, ADBIS, e 4, Act]
U {Travelsecact[Lena, DEXA, 1000]) | 800 < e < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e Now the update negotiation propagates back right to left.
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Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Apprvygt [Lena, ADBIS, 5, Steve]

Employee
+ V({Travelgmp[Lena, ADBIS, €4, d 4, 1] Travelgecact TT
[ 800 < eq < 2000,5 < d4 < 10} EmplD
U {Travelgmp[Lena, DEXA, ep, dp, 1] CO’n,fID
[ 1000 < ep < 2000,3 < dp < 10}) Amnit
+ V ({ Travelsecact [Lena, ADBIS, e 4] { A[CCOJnt'nf]I
+ V ({Apprvact[Lena, ADBIS, e 4, Act
—I—TraveISeCMgt [Lena, ADBIS, 5, Steve] | 800 < ey < 1000} 800 < ea < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

U {Travelsecact[Lena, DEXA, 1000])

e The two values in the port-status registers must be lifted to the Secretariat
component simultaneously.
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Management

Travelgnp Travelgt
EmplID T EmplID
ConfID ConfID

Amnt

NDays

SuplD

Amnt
NDays
Notes

+Apprvygt [Lena, ADBIS, 5, Steve]

Employee Ecregartat
Travel
+ V({Travelgmp[Lena, ADBIS, e4,da, 1] SecAct v
02 . < FEATL B & i 1] + \V ({Travelsci[Lena, ADBIS, e 4, 5, Steve] EmplD
U {Travelgmp[Lena, DEXA, ep, dp, 1] ConflD
1000 € ep < 2000,3 < dp < 10}) | 800 < e4 < 1000}) Am;:t
+ \/ ({Travelsecact [Lena, ADBIS, e 4] — A{ccountln,c]z
+ V({Apprvact[Lena, ADBIS, e 4, Act
—I—TraveISeCMgt [Lena, ADBIS, 5, Steve] | 800 < ey < 1000} 800 < e4 < 1000, Act € {Intl1, Intl2}}
_ _ U {Apprvac[Lena, DEXA, 1000, Dom1))

U {Travelsecact[Lena, DEXA, 1000])

e The maximal lifting is selected.

e The Secretariat imposes no additional limitations.
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Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Apprvygt [Lena, ADBIS, 5, Steve]

Employee Ecretariat

Travelgecact
EmplD
ConfID
Amnt

*Vﬁ{;;g“;'ij[;2"35321'5;:@3}“] +\/({Travels.[Lena, ADBIS, e 4, 5, Steve]
| 800 < e < 1000})

U {Travelgmp[Lena, DEXA, ep, dp, 1]
[ 1000 < ep < 2000,3 < dp < 10})

Accounting

+ V({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e The two port-status registers are now cleared.
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Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Apprvygt [Lena, ADBIS, 5, Steve]

Bcretariat

+ V ({Travs.t[Lena, ADBIS, e 4, 5, Steve]
| 800 < A4 < 1000})

+ V ({Travelgmpsct[Lena, ADBIS, e 4, 5]
| 800 < ey < 1000})

Employee

+ \V/({Travelgmp[Lena, ADBIS, e 4, d 4, 1]
| 800 < e4 < 2000,5 < ds < 10}

Travelgecact
EmplD
ConfID
Amnt

U {Travelgmp[Lena, DEXA, ep, dp, 1]
[ 1000 < ep < 2000,3 < dp < 10})

Accounting

+ V({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e The update request is then projected to the appropriate port-status register
connecting Secretariat to Employee.
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Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD
+Apprvygt [Lena, ADBIS, 5, Steve]

l o " M
+ V ({Travelsc;[Lena, ADBIS, e 4, 5, Steve]
| 800 < e4 < 1000})

Travelgecact
EmplD

ConfID

Amnt

+ V({Travelgmp[Lena, ADBIS, e 4, 5, 11]
800 < e4 < 1000})

+ V ({Travelgmpsct[Lena, ADBIS, e 4, 5]
| 800 < ey < 1000})

Accounting

+ V({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e This update request is then lifted to the Employee component.

e Again, the maximal lifting is selected.
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Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Apprvygt [Lena, ADBIS, 5, Steve]

l o " M
+ V ({Travelsc;[Lena, ADBIS, e 4, 5, Steve]
| 800 < e4 < 1000})

Travelgecact
EmplD

ConfID
Amnt

+ V({Travelgmp[Lena, ADBIS, e 4, 5, 11]
800 < e4 < 1000})

Accounting

+ V({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e The port-status register is cleared.

e Note that all port-status registers are now clear.
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Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes SuplD

+Apprvygt [Lena, ADBIS, 5, Steve]

l o " M
+ V ({Travelsc;[Lena, ADBIS, e 4, 5, Steve]
| 800 < e4 < 1000})

Travelgecact
EmplD

ConfID
Amnt

+Travelgmp[Lena, ADBIS, 1000, 5, 11]

Accounting

+ V({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e Finally, Lena selects an update from amongst the possibilities.
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Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes

+Apprvygt [Lena, ADBIS, 5, Steve]

+Travelse;[Lena, ADBIS, 1000, 5, Steve] | "yeisecac

ConfID
+Travelgmp[Lena, ADBIS, 1000, 5, 11] Amnt

Accounting

+ V({Apprvact[Lena, ADBIS, e 4, Act]
| 800 < e4 < 1000, Act € {Intl1, Intl2}}
U {Apprvact[Lena, DEXA, 1000, Dom1])

e This update is propagated to the other components for agreement.

e The messages passed through the port-status registers are not shown.
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Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes

Accounting

+Apprvaci[Lena, ADBIS, 1000, Intl1]

e This update is propagated to the other components for agreement.
e The messages passed through the port-status registers are not shown.

e Note that a decision of which account to use is made by Accounting, but is not
propagated since it is local to that component.
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Management

Travelgnp Travelgt
EmpID EmplID
ConfID ConfID
Amnt Amnt
NDays NDays
Notes

Accounting

+Apprvaci[Lena, ADBIS, 1000, Intl1]

e Finally, these proposed updates may be committed to the database.
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Conclusions and Properties of the Solution Technique

e A model for updating database views which is based upon the cooperation of
interconnected components has been presented.

e This approach is particularly attractive in situations in which the reflected update

requires access privileges beyond those possessed by the user of the view to be
updated.

e The formal model is a first, proof-of-concept design, and has the following
limitations:
e |t is opportunistic: Individual users cannot control the flow of cooperation.
e It applies only to insertions and deletions.

e Negotiation is monotonic, in that update proposals can only be refined;
additional changes cannot be added after the process begins.

e These limitations have the following positive implication.

Theorem The negotiation process always terminates. Negotiations which proceed
indefinitely are not possible. O



Further Directions

Complex negotiation: The following extensions are particularly crucial.

11 / 11



Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

11 / 11



Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

11 / 11



Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

11 / 11



Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

Locking and implementation mechanism:

11 / 11



Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

Locking and implementation mechanism:

e Multi-user cooperative update requires a suitable locking mechanism.

11 / 11



Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

Locking and implementation mechanism:
e Multi-user cooperative update requires a suitable locking mechanism.

e Implementation of component-based schemata also requires further study.

11 / 11



Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

Locking and implementation mechanism:
e Multi-user cooperative update requires a suitable locking mechanism.

e Implementation of component-based schemata also requires further study.

Relationship to workflow:

11 / 11



Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

Locking and implementation mechanism:
e Multi-user cooperative update requires a suitable locking mechanism.

e Implementation of component-based schemata also requires further study.

Relationship to workflow:

e There is an apparent close connection between the flow of control which
cooperative update mandates and the notion of workflow for complex
Processes.

11 / 11



Further Directions

Complex negotiation: The following extensions are particularly crucial.

Nonmonotonicity: Retract existing proposals and replace them with new ones.

User-defined control flow: Enable users to determine the flow of control in the
negotiation process (in contrast to a purely opportunistic model).

Intra-component negotiation: Allow several users to negotiate internally
within a component.

Locking and implementation mechanism:
e Multi-user cooperative update requires a suitable locking mechanism.

e Implementation of component-based schemata also requires further study.

Relationship to workflow:

e There is an apparent close connection between the flow of control which

cooperative update mandates and the notion of workflow for complex
Processes.

e The precise way in which cooperative update defines constraints on the
possible workflow patterns for the system warrants further study.

11 / 11
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