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Introduction
Similarity

= Are they similar ?
» Based on what?




Introduction

Similarity measure

=\We can define a similarity function
» Compare pairs of elements
» Based on the elements attributes.
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Background

Metric Space

= A metric space is defined by M< S, d >

Let s;,8,,8,¢€ S, thend: Sx S-R" must hold:

= |dentity
> d(sy,81) =0
= Simetry
> d(sy, s,) = d(s,, 84)
= Non negativity
»0 <d(sy, S,) <, tos1 # s2
= Triangular inequality
> d(s4,S,) < d(s4,83) + d(S;,8,)




Background

Similarity queries

= Most commom:

» Range query

K-nearest neighbor query




Background

Metric Access Methods

= Index data in a Metric Space
» Distance-based trees

= Classification

» Disk-based trees
— Slim-tree, M-tree, MVP-tree, OMNI-family, DF-tree, DBM-tree

> Main memory-based trees
— GH-tree, VP-tree, GNAT, MM-tree

= Pruning of subtrees
» Exploring the triangular inequality property.




Background

Memory-based vs Disk-based Metric Trees

= Advantages of Memory-based trees

» The partition of space is flexible
— Not fixed number of elements per node
» Do not perform disk I/O

— Fast to build
— Fast to answer queries

= Disavantages
» They are not persistent
» There must be enough memory for data

8 v




Motivation
MM-tree

= A height-balanced tree
» Reduces nodes retrieval on disk-based trees
— Less disk accesses (they are computational expensive)
= But a main-memory tree

» Do not perform disk access

» We can choose to build a tree not fully balanced
— In order to form disjoint regions
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The MM-tree

Two levels example

Pivots
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The MM-tree

Building the tree

11



The MM-tree

Building the tree
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The MM-tree

Building the tree




The MM-tree

Building the tree




The MM-tree

Memory metric tree

= |t holds 2 elements per node
» Divides the space into 4 disjoint regions
» Only 2 distances per node are calculated

node(sy, s2,d(sy1, S2), Ptry, Ptro, Ptrs, Ptry]
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The MM-tree

Inserting elements - choosing subtrees

= MM-tree is Dynamic
> On Insertion
— Which region
the new element
will belong to?

d(si,s1) 0 r|d(si,s2) 0 r[Region
< < |
< > 11
> < ] IV
> > IV
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The MM-tree

Balancing control on leaf nodes
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The MM-tree

Range Queries l

= Range Query (Sq, rq)

» At each node detect which
subtree to visit

Visiting conditions:

Region I [(d(s,,s2) <71q+7) A (d(sg,s1) <71+ T)
Region II |(d(sq, 82) + 1 > 1) A (d(8q,81) < 1¢+7)
Region I1|(d(s,, s2) < 7rq+7) A (d(sg,81) + 714 =>7)
Region IV |(d(sq,82) + 1 2 7) A (d(sg,81)+ 19 2>T)
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The MM-tree

Guided k-NN Query

» The sequence of subtrees visited depends on
where the query center is.

= \Visit order:

(Y -1 vy =
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The MM-tree

Guided k-NN Query

» The sequence of subtrees visited depends on
where the query center is.

= \Visit order:

G-IV =
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The MM-tree

Guided k-NN Query

» The sequence of subtrees visited depends on
where the query center is.

= \Visit order:
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The MM-tree

Guided k-NN Query

= Generalizing, there are
different sequences for

each region IV
visit order

region s, lies|condition C C is true C is false

| dy < ds [—II—(IILIV) I—=III—(IL.IV)

I do —d < d — dy|[II=I—=IV—=II|{II=IV—=IV—=II

I11 dy —d < d — da|ITII=I—=IV=IT{IIT—=IV—=I-=II

IV dy < ds IV—=II—=I-=II1V—=II—I1-II
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Experiments

Construction Statistics

» The MM-tree was compared with

» Slim-tree
> \VVP-tree
Points Cities Color Histograms
MAM | Dist |Time (ms)| Dist |Time (ms)| Dist |Time (ms)
MM-tree| 161143 190] 89783 126| 167705 737
Slim-tree| 633374 297 451830 156 665453 1234
VP-tree 2381532 1625]1203897 640(2346300 6183
23 -




Experiments

Construction Statistics

# of distance calculations (x 10000)
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Experiments

MM-tree structure statistics _
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Avg # of distance calculations

Experiments

Color Histograms dataset _
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Experiments

Color Histograms dataset _
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Avg # of distance calculations

Experiments

Color Histograms dataset
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Total time (ms)

Experiments

Color Histograms dataset
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Conclusions
The MM-tree

= Useful for emerging applications that require the
DBMS to provide fast ways to build indexes on data
that fit in main memory

* The MM-tree is fast to build and provide fast
similarity queries, partitioning the metric space into
disjoint regions.

= Compared to the Slim-tree
» KNN = 26% less distance calculations, 24% faster
» RQ = 62% less distance calculations, 60% faster
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The MM-tree

A Memory-Based Metric Tree Without Overlap
Between Nodes

Thank You.
Open to questions.

Ives R. V. Pola
Caetano TrainaJr.
AgmaJ. M. Traina
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