University of São Paulo São Carlos - S.P.

The MM-tree

A Memory-Based Metric Tree Without Overlap Between Nodes

Ives R. V. Pola Caetano Traina Jr. Agma J. M. Traina

Outline

- Introduction
- Background
- Motivation
- The MM-tree
- Experiments and Results
- Conclusions

Introduction

Similarity

Are they similar ?Based on what?

Introduction

Similarity measure

We can define a similarity function

- Compare pairs of elements
- Based on the elements attributes.

Metric Space

A metric space is defined by *M* < S, d >

Let $s_1, s_2, s_3 \in \mathbf{S}$, then d: $\mathbf{S} \times \mathbf{S} \rightarrow \mathbb{R}^+$ must hold:

- Identity
 - ► $d(s_1,s_1) = 0$
- Simetry
 - ► $d(s_1, s_2) = d(s_2, s_1)$
- Non negativity
 - ▶ 0 < d(s₁, s₂) < ∞ , to s1 ≠ s2
- Triangular inequality
 - ► $d(s_1,s_2) \le d(s_1,s_3) + d(s_3,s_2)$

Similarity queries

- Most commom:
 - Range query

K-nearest neighbor query

Metric Access Methods

Index data in a Metric Space

Distance-based trees

Classification

- Disk-based trees
 - Slim-tree, M-tree, MVP-tree, OMNI-family, DF-tree, DBM-tree
- Main memory-based trees
 - GH-tree, VP-tree, GNAT, MM-tree
- Pruning of subtrees
 - Exploring the triangular inequality property.

Memory-based vs Disk-based Metric Trees

Advantages of Memory-based trees

- The partition of space is flexible
 - Not fixed number of elements per node
- Do not perform disk I/O
 - Fast to build
 - Fast to answer queries

Disavantages

- They are not persistent
- There must be enough memory for data

Motivation

MM-tree

A height-balanced tree

- Reduces nodes retrieval on disk-based trees
 - Less disk accesses (they are computational expensive)

But a main-memory tree

- Do not perform disk access
- We can choose to build a tree not fully balanced
 - In order to form disjoint regions

Two levels example

Memory metric tree

It holds 2 elements per node

- Divides the space into 4 disjoint regions
- Only 2 distances per node are calculated

$node[s_1, s_2, d(s_1, s_2), Ptr_1, Ptr_2, Ptr_3, Ptr_4]$

Inserting elements - choosing subtrees

Balancing control on leaf nodes

Visiting conditions:

Region I	$(d(s_q, s_2) < r_q + r)$	\wedge	$(d(s_q, s_1) < r_q + r)$
Region II	$(d(s_q, s_2) + r_q \ge r)$	\wedge	$(d(s_q, s_1) < r_q + r)$
Region III	$(d(s_q, s_2) < r_q + r)$	\wedge	$(d(s_q, s_1) + r_q \ge r)$
Region IV	$(d(s_q, s_2) + r_q \ge r)$	\wedge	$(d(s_q, s_1) + r_q \ge r)$

Guided k-NN Query

The sequence of subtrees visited depends on <u>where</u> the query center is.

Guided k-NN Query

The sequence of subtrees visited depends on <u>where</u> the query center is.

Guided k-NN Query

The sequence of subtrees visited depends on where the query center is.

		visit order		
region s_q lies	condition C	C is true	C is false	
Ι	$d_1 \le d_2$	$I{\rightarrow}II{\rightarrow}(III,IV)$	$I{\rightarrow}III{\rightarrow}(II,IV)$	
II	$d_2 - d \le d - d_1$	$II {\rightarrow} I {\rightarrow} IV {\rightarrow} III$	$II{\rightarrow}IV{\rightarrow}IV{\rightarrow}II$	
III	$d_1 - d \le d - d_2$	$III{\rightarrow}I{\rightarrow}IV{\rightarrow}II$	$III{\rightarrow}IV{\rightarrow}I{\rightarrow}II$	
IV	$d_1 \le d_2$	$IV {\rightarrow} II {\rightarrow} I {\rightarrow} III$	$IV {\rightarrow} III {\rightarrow} I {\rightarrow} II$	

Construction Statistics

The MM-tree was compared with

- ► Slim-tree
- ► VP-tree

	Points		С	ities	Color Histograms	
MAM	Dist	Time (ms)	Dist	Time (ms)	Dist	Time (ms)
MM-tree	161143	190	89783	126	167705	737
Slim-tree	633374	297	451830	156	665453	1234
VP-tree	2381532	1625	1203897	640	2346300	6188

Color Histograms dataset

Range query

Range query

Conclusions

The MM-tree

- Useful for emerging applications that require the DBMS to provide fast ways to build indexes on data that fit in main memory
- The MM-tree is fast to build and provide fast similarity queries, partitioning the metric space into disjoint regions.

Compared to the Slim-tree

- KNN = 26% less distance calculations, 24% faster
- ► RQ = 62% less distance calculations, 60% faster

A Memory-Based Metric Tree Without Overlap Between Nodes

> Thank You. Open to questions.

Ives R. V. Pola Caetano Traina Jr. Agma J. M. Traina

